
Philippe Canal (FNAL) for the GeantV development team

G.Amadio (UNESP), Ananya (CERN), J.Apostolakis (CERN) , A.Arora (CERN), M.Bandieramonte (CERN),

A.Bhattacharyya (BARC), C.Bianchini (UNESP), R.Brun (CERN), Ph.Canal (FNAL), F.Carminati (CERN),

L.Duhem (intel), D.Elvira (FNAL), A.Gheata (CERN), M.Gheata (CERN), I.Goulas (CERN), R.Iope (UNESP),

S.Y.Jun (FNAL), G.Lima (FNAL), A.Mohanty (BARC), T.Nikitina (CERN), M.Novak (CERN), W.Pokorski

(CERN), A.Ribon (CERN), R.Sehgal (BARC), O.Shadura (CERN), S.Vallecorsa (CERN), S.Wenzel (CERN),

Y.Zhang (CERN)

GeantV

Outline

 GeantVectorized – an introduction

 The problem

 Existing solutions

 Challenges, ideas, goals

 Main components and performance

 Design and infrastructure

 Vectorization: overheads vs. gains

 Geometry library

 Physics processes

 Performance benchmarks

 Results, milestones, plans

2

The problem

Detailed simulation of subatomic particle
transport and interactions in detector
geometries

Using state of the art physics models,
propagation in electromagnetic fields in
geometries having complexities of
millions of parts

Heavy computation requirements,
massively CPU-bound, seeking
organically HPC solutions…

The LHC uses more than 50% of its
distributed GRID power for detector
simulations (~250.000 CPU years
equivalent so far)

3

http://atlas.ch

Geometry

4

A large collection of solids are defined (similar to Geant4 below)

G4Cons

G4Tubs

G4Polycone, G4 Polyhedra, G4Hype,

G4TwistedTubs, G4TwistedTrap

Also Boolean

operations such as:

Transportation

5

The track information is updated before and after every step

in the particle (track) propagation

A Track also includes the info for transporting the particle
through the detector  we typically use Particle = Track

T2-T8
(secondar
y tracks)

Magnetic Field

6

Particle propagated in EM field by integration of equation of

motion using the Runge-Kutta method (others also available)

 Curved path broken into linear chord segments to minimize the

sagitta (maximum chord-trajectory distance)

 Chords used to interrogate navigator on whether the track has

crossed a volume boundary

 miss distance parameter used to tune volume intersection

accuracy

Need to supports user defined, uniform, and non-uniform

(static or time dependent) magnetic fields

Physics

7

 A set of models for physics processes which include the cross

sections and final state information for each particle type

 The process categories are electromagnetic, hadronic,

decay, optical, photolepton_hadron, parameterization,

transportation

 Three kinds of process actions: AtRest (decay, annihilation),

AlongStep (continuous interactions like ionization), PostStep

(point-like interactions like decay in flight, EM, hadronic)

Processes are defined for both primary and secondary

particles

 Particles tracked down to zero kinematic energy

 Production cuts on secondary particles set to a default of 1

mm, secondaries with Ekin < ETh to travel 1 mm are stopped

What do we want to do?

 Develop an all-particle transport simulation software
with

 Geant4 physics models

 A performance between 2 and 5 times greater than
Geant4

 Full simulation and various options for fast
simulation

 Portable on different architectures, including
accelerators (GPUs and Xeon Phi’s)

 Understand the limiting factors for a one-order-of-
magnitude (10x) improvement

8

Challenges

 Overhead from reshuffling particle lists should not offset SIMD
gains

 Exploit the hardware at its best, while maintaining portability

 Test from the onset on a “large” setup (LHC-like detector)

 Toy models tell us very little – complexity is the problem

9

Scheduler

CPU GPU Phi XXXAtom

The ideas

 Transport particles in groups (vectors)
rather than one by one

 Group particles by geometry volume or
same physics

 No free lunch: data gathering
overheads < vector gains

 Dispatch SoA to functions with vector
signatures

 Use backends to abstract interface:
vector, scalar

 Use backends to insulate
technology/library: Vc, Cilk+, VecMic,
…

 Redesign the library and workflow to target
fine grain parallelism

 CPU, GPU, Phi, Atom, …

 Aim for a 3x-5x faster code, understand
hard limits for more

10

template<class Backend>

Backend::double_t

common_distance_function(Backend::double_t input)

{

// Single kernel algorithm using Backend types

}

struct VectorVcBackend

{

typedef Vc::double_v double_t;

typedef Vc::double_m bool_t;

static const boolIsScalar=false;

static const bool IsSIMD=true;

};

// Functions operating with

backend types

distance(vector_type &);distance(double &);

struct ScalarBackend

{

typedef double double_t;

typedef bool bool_t;

static const bool IsScalar=true;

static const bool IsSIMD=false;

};

// Functions operating with backend

types

Scalar interface Vector interface

code.compeng.uni-frankfurt.de/projects/vc

A generic kernel
The Backend, as discussed

MaskedAssign() is an optimized if() replacement

Arithmetics just works!

11

HEP transport is mostly local !

12

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.

50 per cent of
the time spent in
50/7100 volumes

• Locality not exploited by

the classical transport

• Existing code very

inefficient (0.6-0.8 IPC)

• Cache misses due to

fragmented code

“Basketised” transport

Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in
output buffers

A dispatcher thread puts

particles back into
transport buffers

Everything happens
asynchronously and
in parallel

The challenge is to
minimise locks

Keep long vectors

Avoid memory
explosion

13

Geometry - VecGeom

14

• Geometry takes 30-40%

CPU time of typical

Geant4 HEP Simulation

• A library of vectorised

geometry algorithms to

take maximum advantage

of SIMD architectures

• Substantial performance

gains also in scalar mode

Better scalar
code

Geometry performance on K20

 Speedup for different navigation
methods of the box shape,
normalized to scalar CPU

 Scalar
(specialized/unspecialized)

 Vector

 GPU (Kepler K20)

 ROOT

 Data transfer in/out is
asynchronous

 Measured only the kernel
performance, but providing
constant throughput can hide
transfer latency

 The die can be saturated with
both large track containers,
running a single kernel, or with
smaller containers dynamically
scheduled.

 Just a baseline proving we can
run the same code on

15

What about physics?

 Needed a “reasonable” shower development

 Developed a library of sampled interactions and tabulated x-

sections for GeantV

 Back ported to Geant4 for verification and comparison

 A quick tool for developing realistic showers

 Potentially for developing into a fast simulation tool

16

Physics Performance

 Objective: a vector/accelerator friendly re-write of physics
code

 Started with the electromagnetic processes

 The vectorised Compton scattering shows good
performance gains

 Current prototype able to run an exercise at the scale of an
LHC experiment (CMS)

 Simplified (tabulated) physics but full geometry, RK
propagator in field

 Very preliminary results needing validation, but hinting
to performance improvements of factors

17

0

1

2

3

4

5

6

7

8

10 100 500 1000 5000 10000

S
p

e
e
d

u
p

Number of tracks

Speed-up on Xeon Phi(R) C0PRQ-7120
for Compton KN model compared to Geant4

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)

CMS Ecal

Scheme for GPU

 Broker adapts baskets to the coprocessor

 Selects tracks that are efficiently processed on coprocessor

 Gather in chunk large enough (e.g. 4096 tracks on NVidia K20)

 Transfer data to and from coprocessor

 Execute kernels

 On NVidia GPU, we are effectively using implicit vectorization

 Rather than one thread per basket, on the GPUs we use 4096
threads each processing one of the tracks in the basket

 Cost of data transfer is mitigated by overlapping kernel
execution and data transfer

 We can send fractions of the full GPU's work asynchronously
using streams

18

GPU Status

 Have working broker with ‘geometry only’ kernel

 Just finished updating the tabulated physics code to easily
transfer the underlying data tables to the GPU.

 Next

 Adapt to new navigation code

 Incorporate Physics code into CUDA Kernel

 Running the full prototype using GPU as co-processor

 Understand performance issues and latency limitations of the whole
kernel code on NVidia K20

 Currently no customization of the algorithm for GPU

 Optimize the application for the GPU

 Enhance kernel(s) and tune scheduling parameters

19

Challenges

 Large somewhat heterogeneous CUDA kernel

 One technique tested in previous incarnation of the code is to split

the kernel into smaller part and sort the tracks on the device to

gather the tracks that will go through the same ‘branch’.

 Historically CUDA profiler gave information on the kernel as a

whole

 Makes it hard to pin point bottleneck or slower portion of the code

 Is that still the case?

 Tabulated physics ‘likely’ bottleneck will be the high number of

often not coalesced memory fetch into the tables.

20

Thank you!

21

BACKUPS

22

The X-Ray benchmark

 The X-Ray benchmark tests
geometry navigation in a real
detector geometry

 X-Ray scans a module with virtual
rays in a grid corresponding to pixels
on the final image

 Each ray is propagated from
boundary to boundary

 Pixel gray level determined by
number of crossings

 A simple geometry example
(concentric tubes) emulating a
tracker detector used for Xeon©Phi
benchmark

 To probe the vectorized geometry
elements + global navigation as
task

 OMP parallelism + “basket”
model 23

OMP

threads

Yardstick: CMS With Tabulated

Physics

Realistic Scale Simulation

 pp collisions @ 14TeV minimum bias events produced by Pythia 8

 2015 CMS detector

 4T uniform magnetic field

 Decent approximation of the real
solenoidal field

 Low energy cut at 1MeV

 ‘Tabulated’ Physics

 Library of sampled interactions and
tabulated x-sections

 Same test (described above) run with both Geant4
and GeantV with various versions of the Geometry library.

24

Putting It All Together - CMS

Yardstick

Scheduler Geometry Physics Magnetic Field

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK

implementations

Geant4 or

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics

Code

• Helix

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics

Code

Vectorized RK

Implementation

25

Semantic changes

Putting It All Together - CMS

Yardstick

Scheduler Geometry Physics Magnetic Field

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK

implementations

Geant4 or

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics

Code

• Helix (Fixed Field)

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics

Code

Vectorized RK

Implementation

26

Semantic changes

Putting It All Together - CMS

Yardstick

 Some of the improvements can be
back ported to G4

 Overhead of basket handling is
under control

 Ready to take advantage of
vectorization throughout.

Improvement Factors (total) with respect to
G4

Legacy (TGeo) Geometry library:

 1.5  Algorithmic improvements in
infrastructure.

2015 VecGeom (estimate)

 2.4  Algorithmic improvements in
Geometry

Upcoming VecGeom (early result)

 3.3  Further Geometric algorithmic
improvements and some
vectorization

27

