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The problem

Detailed simulation of subatomic particle 
transport and interactions in detector 
geometries

Using state of the art physics models, 
propagation in electromagnetic fields in 
geometries having complexities of 
millions of parts

Heavy computation requirements, 
massively CPU-bound, seeking 
organically HPC solutions…

The LHC uses more than 50% of its 
distributed GRID power for detector 
simulations (~250.000 CPU years 
equivalent so far)
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http://atlas.ch



Geometry
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A large collection of solids are defined (similar to Geant4 below) 

G4Cons

G4Tubs

G4Polycone, G4 Polyhedra, G4Hype, 

G4TwistedTubs, G4TwistedTrap 

Also Boolean 

operations such as: 



Transportation
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The track information is updated before and after every step 

in the particle (track) propagation 

A Track also includes the info for transporting the particle 
through the detector  we typically use  Particle = Track

T2-T8 
(secondar
y tracks)



Magnetic Field
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Particle propagated in EM field by integration of equation of 

motion using the Runge-Kutta method (others also available)

 Curved path broken into linear chord segments to minimize the 

sagitta (maximum chord-trajectory distance)

 Chords used to interrogate navigator on whether the track has 

crossed a volume boundary

 miss distance parameter used to tune volume intersection 

accuracy

Need to supports user defined, uniform, and non-uniform 

(static or time dependent) magnetic fields



Physics
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 A set of models for physics processes which include the cross 

sections and final state information for each particle type

 The process categories are electromagnetic, hadronic, 

decay, optical, photolepton_hadron, parameterization, 

transportation

 Three kinds of process actions: AtRest (decay, annihilation), 

AlongStep (continuous interactions like ionization), PostStep

(point-like interactions like decay in flight, EM, hadronic)

Processes are defined for both primary and secondary 

particles

 Particles tracked down to zero kinematic energy

 Production cuts on secondary particles set to a default of 1 

mm, secondaries with Ekin < ETh to travel 1 mm are stopped



What do we want to do?

 Develop an all-particle transport simulation software 
with

 Geant4 physics models

 A performance between 2 and 5 times greater than 
Geant4

 Full simulation and various options for fast 
simulation

 Portable on different architectures, including 
accelerators (GPUs and Xeon Phi’s)

 Understand the limiting factors for a one-order-of-
magnitude (10x) improvement
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Challenges

 Overhead from reshuffling particle lists should not offset SIMD 
gains

 Exploit the hardware at its best, while maintaining portability

 Test from the onset on a “large” setup (LHC-like detector)

 Toy models tell us very little – complexity is the problem
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The ideas

 Transport particles in groups (vectors) 
rather than one by one

 Group particles by geometry volume or 
same physics

 No free lunch: data gathering 
overheads < vector gains

 Dispatch SoA to functions with vector 
signatures

 Use backends to abstract interface: 
vector, scalar

 Use backends to insulate 
technology/library: Vc, Cilk+, VecMic, 
… 

 Redesign the library and workflow to target 
fine grain parallelism

 CPU, GPU, Phi, Atom, …

 Aim for a 3x-5x faster code, understand 
hard limits for more
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template<class Backend>

Backend::double_t 

common_distance_function( Backend::double_t input )

{

// Single kernel algorithm using Backend types

}

struct VectorVcBackend

{

typedef Vc::double_v double_t;

typedef Vc::double_m bool_t;

static const boolIsScalar=false;

static const bool IsSIMD=true;

};

// Functions operating with 

backend types

distance( vector_type &);distance( double &);

struct ScalarBackend

{

typedef double double_t;

typedef bool   bool_t;

static const bool IsScalar=true;

static const bool IsSIMD=false;

};

// Functions operating with backend 

types

Scalar interface Vector interface

code.compeng.uni-frankfurt.de/projects/vc



A generic kernel
The Backend, as discussed

MaskedAssign( ) is an optimized if( ) replacement

Arithmetics just works!
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HEP transport is mostly local !
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ATLAS volumes sorted by transport time. The same 
behavior is observed for most HEP geometries.

50 per cent of 
the time spent in 
50/7100 volumes

• Locality not exploited by 

the classical transport

• Existing code very 

inefficient (0.6-0.8 IPC)

• Cache misses due to 

fragmented code



“Basketised” transport

Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in 
output buffers

A dispatcher thread puts 

particles back into 
transport buffers

Everything happens 
asynchronously and 
in parallel

The challenge is to 
minimise locks

Keep long vectors

Avoid memory 
explosion
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Geometry - VecGeom
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• Geometry takes 30-40% 

CPU time of typical 

Geant4 HEP Simulation

• A library of vectorised

geometry algorithms to 

take maximum advantage 

of SIMD architectures

• Substantial performance 

gains also in scalar mode

Better scalar
code



Geometry performance on K20

 Speedup for different navigation 
methods of the box shape, 
normalized to scalar CPU

 Scalar 
(specialized/unspecialized)

 Vector

 GPU (Kepler K20)

 ROOT

 Data transfer in/out is 
asynchronous

 Measured only the kernel 
performance, but providing 
constant throughput can hide 
transfer latency

 The die can be saturated with 
both large track containers, 
running a single kernel, or with 
smaller containers dynamically 
scheduled.

 Just a baseline proving we can 
run the same code on 
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What about physics?

 Needed a “reasonable” shower development

 Developed a library of sampled interactions and tabulated x-

sections for GeantV

 Back ported to Geant4 for verification and comparison

 A quick tool for developing realistic showers

 Potentially for developing into a fast simulation tool
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Physics Performance

 Objective: a vector/accelerator friendly re-write of physics 
code 

 Started with the electromagnetic processes

 The vectorised Compton scattering shows good 
performance gains

 Current prototype able to run an exercise  at the scale of an 
LHC experiment (CMS)

 Simplified (tabulated) physics but full geometry, RK 
propagator in field

 Very preliminary results needing validation, but hinting 
to performance improvements of factors
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Scheme for GPU

 Broker adapts baskets to the coprocessor

 Selects tracks that are efficiently processed on coprocessor

 Gather in chunk large enough (e.g. 4096 tracks on NVidia K20)

 Transfer data to and from coprocessor

 Execute kernels

 On NVidia GPU, we are effectively using implicit vectorization

 Rather than one thread per basket, on the GPUs we use 4096 
threads each processing one of the tracks in the basket

 Cost of data transfer is mitigated by overlapping kernel 
execution and data transfer

 We can send fractions of the full GPU's work asynchronously 
using streams
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GPU Status

 Have working broker with ‘geometry only’ kernel

 Just finished updating the tabulated physics code to easily 
transfer the underlying data tables to the GPU.

 Next

 Adapt to new navigation code

 Incorporate Physics code into CUDA Kernel

 Running the full prototype using GPU as co-processor

 Understand performance issues and latency limitations of the whole 
kernel code on NVidia K20

 Currently no customization of the algorithm for GPU 

 Optimize the application for the GPU

 Enhance kernel(s) and tune scheduling parameters

19



Challenges

 Large somewhat heterogeneous CUDA kernel

 One technique tested in previous incarnation of the code is to split 

the kernel into smaller part and sort the tracks on the device to 

gather the tracks that will go through the same ‘branch’.

 Historically CUDA profiler gave information on the kernel as a 

whole

 Makes it hard to pin point bottleneck or slower portion of the code

 Is that still the case? 

 Tabulated physics ‘likely’ bottleneck will be the high number of 

often not coalesced memory fetch into the tables.  
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Thank you!
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BACKUPS
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The X-Ray benchmark

 The X-Ray benchmark tests 
geometry navigation in a real 
detector geometry

 X-Ray scans a module with virtual 
rays in a grid corresponding to pixels 
on the final image

 Each ray is propagated from 
boundary to boundary 

 Pixel gray level determined by 
number of crossings

 A simple geometry example 
(concentric tubes) emulating a 
tracker detector used for Xeon©Phi 
benchmark

 To probe the vectorized geometry 
elements + global navigation as 
task

 OMP parallelism + “basket” 
model 23

OMP 

threads



Yardstick: CMS With Tabulated 

Physics

Realistic Scale Simulation

 pp collisions @ 14TeV minimum bias events produced by Pythia 8

 2015 CMS detector

 4T uniform magnetic field

 Decent approximation of the real
solenoidal field

 Low energy cut at 1MeV

 ‘Tabulated’ Physics

 Library of sampled interactions and 
tabulated x-sections

 Same test (described above) run with both Geant4 
and GeantV with various versions of the Geometry library.
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Putting It All Together - CMS 

Yardstick

Scheduler Geometry Physics Magnetic Field 

Stepper

Geant4 only Legacy G4 Various Physics Lists
Various RK 

implementations

Geant4 or 

GeantV
VecGeom 2016 scalar

• Tabulated

Physics

• Scalar Physics 

Code

• Helix

• Cash-Karp

Runge-Kutta

GeantV only

• VecGeom 2015

• VecGeom 2016 vector

• Legacy TGeo

Vector Physics 

Code

Vectorized RK 

Implementation
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Semantic  changes
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Putting It All Together - CMS 

Yardstick

 Some of the improvements can be 
back ported to G4

 Overhead of basket handling is 
under control 

 Ready to take advantage of 
vectorization throughout.

Improvement Factors (total) with respect to 
G4

Legacy (TGeo) Geometry library:

 1.5  Algorithmic improvements in 
infrastructure.

2015 VecGeom (estimate)

 2.4  Algorithmic improvements in 
Geometry

Upcoming VecGeom (early result)

 3.3  Further Geometric algorithmic 
improvements and some 
vectorization
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