
SixTrack for GPU
R. De Maria

SixTrack Status

SixTrack: Single Particle Tracking Code [cern.ch/sixtrack].

• 70K lines written in Fortran 77/90 (with few pre-processing steps).

• Numerically portable across OS and compilers.

• Used in the volunteer computing project LHC@Home with 200k registered
users and about 20k cpus simultaneously running.

Example of an LHC simulation:
• 30k particles;
• 107 turns;
• 20k beam line elements.
Code speed:
• average 100 ns per particle per beam element
• 500 turns/(particle∙sec) on serial code in recent

hardware (LHC particles make 11245 turns/sec)

SixTrack GPU Status
GPU porting is being explored in the context of

• LHC@Home to use volunteer GPU:
• heterogeneous hardware and software hard to test and fully deploy, many low-end GPU

expected (low FP64 FLOPS count).
• D. Mikushin (Applied Parallel Computing LLC) [indico/event/450856] demonstrated

deploying with CUDA + additional compilation stages + code annotations + special
compiler software (numerically ok without FMAC instructions, no benchmark available).

• Standalone tracking library (SixTrackLib) to be used with other codes (including
SixTrack itself):

• lightweight code being written in C/OpenCL for flexibility/portability (CERN&GSoC’14-’15).
• speed-up of 250x w.r.t single i7 core with AMD-280X (~1TFLOPS FP64, ~300CHF) on first

tests driven by pyopencl.
• ongoing development: OpenCL not completed yet, pure python version benchmarked on

components done for the LHC.

Hardware for single particle simulations:

• High FP64 FLOPS counts.

• Memory bandwidth and memory size less important.

Recent Hardware for FP64
Name TFLOPS

(SP/DP)
Mem
GB

Price

AMD Radeon 280 3.2/0.8 3 194CHF/175$

AMD Radeon 280X 4.1/1 3 no stock /220$

AMD FirePro W8100 4.2/2.1 8/ECC 1100CHF/1000$

AMD FirePro W9100 5.2/2.6 16/ECC 3200CHF/3000$

Nvidia Titan Black 4/1.3 6 ~1000$ (not available)

Nvidia Titan Z 8/2.7 12 ~1500$ (ebay)

Nvidia Tesla K40 4.2/1.4 12/ECC 4000CHF/3200$

Nvidia Tesla K80 8.7/2.9 24/ECC 5500CHF/5000$

19/02/2016

10x cost difference for same (nominal) performance!

SixTrack: Model

Tracking: propagate p particles through m elements for n times

Single Particle Loop:

for z in particles

for n times

for elem in elements

f=funset[elem.type]

z=f(elem,z)

funset= list of functions
elememts = list of arrays
particles = array of arrays

Multi Particle Loop:

for n times

for elem in elements

g=funset[elem.type]

if g is multiparticle

particles=g(elem,particles)

elif g is singleparticle_block

for z in particles

for elem in elements

f=funset[elem.type]

z=f(elem,z)SixTrackLib: kernel implemented in OpenCL
z=particles[thread_id]

for elem in elements

f=funset[elem.type]

z=f(elem,z)

particles[thread_id]=z

SixTrackLib: implementation details
SixTrackLib: kernel implemented in OpenCL
z=particles[thread_id]
for elem_id in sequence
elem=elements[elem_id]
f=funset[elem.type]
z=f(elem,z)

particles[thread_id]=z

funset= list of inlined functions in kernel (or in C particle loop for serial version)
=> switch case statements (no function pointer available in Open CL 1.2)

elements = list of arrays (prepared in CPU and copied once to global GPU memory)
=> flat array of union double/integers with structure indices

particles = array of arrays (prepared in CPU and copied once to global GPU memory)
=> flat array of union double/integers (row size fixed)

sequence = array of ints (in the elements array)

Code contains other complications (e.g. dynamic element manipulation,
recursion and particle loss) not covered here.

