
GPU Parallelisation of Particle-In-Cell
Algorithm

Beam Physics Simulations

Giovanni Iadarola, Giovanni Rumolo, and
Adrian Oeftiger (Ph.D. student in

BE-ABP-HSC section / Space Charge Working Group)

GPU Computing Meeting #2, CERN

11. March 2016



PyHEADTAIL / PyECLOUD Studies (Reminder)

PyHEADTAIL

(LIU-)
SPS

2nd +
3rd order
chroma.

electron
cloud

PS

injection
oscilla-
tions

transition
crossing

headtail
modes (HL-)

LHC

RFQ
Landau
damping

double
harmonic

RF

electron
cloud

CLICdamping
rings

PSB
(LIU-PS) hollow

bunches

PyECLOUD

1 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



PyHEADTAIL GPU Ingredients (Reminder)

PyCUDA
(A. Kloeckner)

NumPy
array
model

CUDA
inter-
face

scikit-cuda
(L. Givon)cuFFT

GPU context
manager for
PyHEADTAIL
(S. Hegglin)

master
thesis1

1)http://indico.cern.ch/event/471081/

2 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm

http://indico.cern.ch/event/471081/


Particle-in-cell Algorithm (Reminder)

1 particles to mesh: deposit all macro-particle charges
onto (regularly distributed) mesh nodes

2 solve discretised Poisson equation on the mesh, options:
Hockney’s algorithm =⇒ ‘cheap’ FFT algorithm
direct solving, e.g. via sparse matrices
iterative solving (Jacobi, SOR, Conjugate Gradient, ...)

3 gradient of potential yields electric fields
4 mesh to particles: interpolate mesh fields to particles

3 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



Hockney’s Algorithm (Reminder)

Poisson’s equation (without boundary conditions)

∆φ(~x)= ρ(~x)

can be solved via the Green’s function method

G : ∆G(~x)= δ(~x) .

Trick: mirroring G(~x) for each plane =⇒ periodicity!
Formal solution with convoluted Green’s function

ϕ(~x)=
∫

d3y ρ(~x)G(~x ,~y)

can be expressed as Fourier transform (=⇒ FFT!),

ϕ(~x)=F
{
F {ρ}F {G}

}
.

4 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



What If... Interior Boundary Conditions?

Shortley-Weller algorithm:
next-order boundary interpolation w.r.t. step function
(extrapolating to outer grid point)
vanishing potential at grid edge intersection with boundary

=⇒ implemented in PyECLOUD (on the CPU!)
=⇒ reduces electric field artefacts close to vacuum chamber,

important for electron clouds building up from wall impact
5 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



Peter Messmer: Some Suggested Improvements I

particle-to-mesh deposition
we implemented sorted charge deposition, 3x speed-up
over double precision atomics

 single precision atomics have smaller error significance
than introduced by mesh discretisation

=⇒ (hardware supported) single precision atomics faster (!)

particle-to-mesh and mesh-to-particle interpolation
we implemented custom kernels for cloud-in-cell
interpolation

 textures offer interpolation (single-precision again!)
=⇒ (read-only) texture memory faster

6 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



Peter Messmer: Some Suggested Improvements II

Poisson solver for non-trivial interior boundary conditions
we implemented direct solving algorithm using cuSOLVER

 Poisson matrix direct inversion not well-suited for
parallelisation

=⇒ try iterative solver e.g. with Conjugate Gradient algorithm
via cuSPARSE

7 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



Iterative Solver: Physics Scenario

 12. January: presentation on direct space charge (open
boundary conditions! allows Hockney algorithm / FFT!)

electron cloud in LHC:
quasi-2D problem with interior boundary condition
(perfectly conducting vacuum chamber walls)
need to transversely resolve beam and whole chamber

−→ usual simulations at LHC injection (450GeV): large beam
−→ LHC top energy (6.5GeV): beam size shrinks by factor 4

many successive sub time steps to integrate motion of
electrons between interaction with beam slices
O(100) turns for instability analysis

=⇒ GPU: top energy study feasible with fast iterative solver?
8 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



Electron Cloud in LHC

9 of 9 Adrian Oeftiger Beam Dynamics: Particle-In-Cell Algorithm



Thank you for your attention!

Acknowledgements to PyHEADTAIL / PyPIC / PyECLOUD teams:
Hannes Bartosik, Stefan Hegglin, Giovanni Iadarola, Kevin Li,

Lotta Mether, Annalisa Romano, Giovanni Rumolo, Michael Schenk
https://github.com/PyCOMPLETE/

https://github.com/PyCOMPLETE/

