Future Circular Collider Study

Michael Benedikt

European Strategy Update 2013

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines."

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

pp-collider (*FCC-hh*)
→ defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- 80-100 km infrastructure in Geneva area
- e+e collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option

Strategic Goals

- Make funding bodies aware of strategic needs for research community
- Provide sound basis to policy bodies to establish long-range plans in European interest
- Strengthen capacity and effectiveness in high-tech domains
- Provide a basis for long-term attractiveness of Europe as research area

HEP Timescale

Time Indicator

Case: LHC superconducting dipole magnets

	1980	1985	1990	1995	2000 	2005	2010
Conceptual studies							
R & D		(
Development							
Industrialization							
Series production							
Industry participation	n				~ 15 year	S	
Total			~	25 years	S		

FCC-hh Key Parameters

Parameter	FCC-hh	LHC			
Energy	100 TeV c.m.	14 TeV c.m.			
Dipole field	16 T	8.33 T			
# IP	2 main, +2	4			
Luminosity/IP _{main}	5 x 10³⁴ cm⁻²s⁻¹	1 x 10 ³⁴ cm ⁻² s ⁻¹			
Energy/beam	8.4 GJ	0.39 GJ			
Synchr. rad.	28.4 W/m/apert.	0.17 W/m/apert.			
Bunch spacing	25 ns (5 ns)	25 ns			
Preliminary, subject to evolution					

FCC-ee Key Parameters

Parameter	FCC-ee	LEP2			
Energy/beam	45 – 175 GeV	105 GeV			
Bunches/beam	98 – 16700	4			
Beam current	6.6 – 1450 mA	3 mA			
Luminosity/IP	1.8-28 x 10 ³⁴ cm ⁻² s ⁻¹	0.0012 x 10 ³⁴ cm ⁻² s ⁻¹			
Energy loss/turn	0.03-7.55 GeV	3.34 GeV			
Synchr. power	100 MW	22 MW			
RF Voltage	2.5 – 11 GV	3.5 GV			

Preliminary, subject to evolution

Tevatron (closed) Circumference: 6.2 km

Energy: 2 TeV

Large Hadron Collider Circumference: 27 km

Energy: - 14 TeV (pp) - 209 GeV (e⁺e⁻)

Future Circular Collider Circumference: 80-100 km

Energy:

- 100 TeV (pp)
- >350 GeV (e⁺e⁻)

FCC-ee exploits lessons & recipes from past e⁺e⁻ and pp colliders

Role of CERN

- Host the study
- Prepare organisation frame
- Setup collaboration
- Identify R&D needs
- Estimate costs

FCC WBS top level

Study Timeline

Key Technologies

- 16 T superconducting magnets
- Superconducting RF cavities
- RF power sources
- Synchrotron radiation
- Affordable & reliable cryogenics
- Reliability & availability concepts

High –field SC dipoles

- SC dipole: field defined via current distribution
 - High current densities close to the beam for high fields
 - Only possible with super conductors I > 1 kA/mm2
- Ideal coil geometry for dipolar fields:
 - Azimuthal current distribution $I(\phi) = I_0 \cos(\phi)$ Dipol, $(I_0 \cos(2))$

(I₀cos(2)) Quadrupol)

2 horizontally displaced circles

Cryo-magnet cross sections

LHC cos theta

FCC-hh block coil Nb3Sn as SC material

Towards 16 T magnets

Efficient 2-in-1 FCC-ee arc magnets

- Novel arrangements allow for considerable savings in Ampere-turns and power consumption
- Less units to manufacture, transport, install, align, remove,...

midplane shield for stray field **Dipole:** twin aperture yoke single busbars as coils

Quadrupole: twin 2-in-1 design

Synchrotron radiation

Charged particles on a curved trajectory irradiate energy:

$$\Delta E \sim \text{const} \cdot \gamma^4 / r = \text{const} \cdot (E/E_0)^4 / r = konst \cdot (E/m_0)^4 / r$$

 Energy loss ∆E must be compensated and corresponding heat has to be removed from cold mass of SC magnets (for hadron collider)

$$\Delta W = \Delta Q \cdot (T - T_{\text{tief}}) / T_{\text{tief}} = \Delta Q \cdot (300 - 1.9) / 1.9 \sim 155 \cdot \Delta Q$$

For realistic process efficiency is ~1000: 1 W@1.9 K == 1 kW @ room temp.

Vacuum system – beam screen – cryogenic load

Total electrical power to refrigerator P_{ref.} considering:

- a beam screen similar to that of the LHC
- refrigerator efficiencies identical to those of the LHC.

 T_{cm} = 1.9 K, optimum for T_{bs} = 70-80 K T_{cm} = 4.5 K, flat optimum for T_{bs} = 120 K

Temperature range 40-60 K retained

To limit cryogenic load to ~100 MW.

Forbidden by vacuum and/or by surface impedance

Synchrotron radiation beam screen prototype

High synchrotron radiation load of protons @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs

New Beam screen with ante-chamber

absorption of synchrotron radiation at 50 K to reduce cryogenic power avoids photo-electrons, helps vacuum

First beam screen prototype Testing 2017 in ANKA within EuroCirCol

Geological studies – machine geometries

Geological background

Tunnelling options for crossing the lake

h. Lebrun & FCC I&O meeting

Progress on site investigations

50km

Distance along ring clockwise from CERN (km)

60km

70 km

80 km

400m -200m -

10km

20km

30km

40km

90km

Progress on site investigations

Alignment Shafts Query	Alignment Location		Geology Intersected by Shafts			Shaft Depths			
Choose alignment option 100km quasi-circular 🔻	+	Point Ac	ctual M	Molasse SA	Shaft Depth (m) Wildflysch	Quaternary	Molasse	Geology (m Urgonian) Calcaire
Tunnel elevation at centre:261mASL		A	304	D	0	12	213	0	79
		в							
Grad. Params		с							
Sione Apple xx(%): 0.65		D							
Slope Angle v-v(%): 0		E							
		F	392						
Alignment centre		G							
X: 2499731 Y: 1108403	State of the second	н							
CP 1 CP 2		1							
Angle Depth Angle Depth		J							
LHC -64* 220m 64* 172m	Contraction of the same for the second	к							
SPS 242m 241m									
TI2 235m 241m		· · ·	-200	-			107		
Ti8 242m 170m	H G C C C C C C C C C C C C C C C C C C	Total	3211	52	0	517	2478	0	109

- 90 100 km fits geological situation well
- LHC suitable as potential injector
- The 100 km version, intersecting LHC, is now being studied in more detail

FCC-hh injector studies

Injector options:

- SPS \rightarrow LHC \rightarrow FCC
- SPS/SPS_{upgrade} → FCC
- SPS->FCC booster→FCC

Current baseline:

 injection energy 3.3 TeV LHC

Alternative options:

- Injection around 1.5 TeV
- compatible with: SPS_{upgrade}, LHC, FCC booster

Common layouts for hh & ee

A sustained decrease in specific cost

Specific cost vs center-of-mass energy of CERN accelerators

FCC International Collaboration

- 75 institutes
- 26 countries + EC

Status: April, 2016

FCC Collaboration Status

75 collaboration members & CERN as host institute, April 2016

ALBA/CELLS, Spain Ankara U., Turkey U Belgrade, Serbia U Bern, Switzerland **BINP**, Russia CASE (SUNY/BNL), USA **CBPF**, Brazil **CEA Grenoble, France CEA Saclay, France CIEMAT**, Spain **Cinvestav, Mexico CNRS**, France **CNR-SPIN**, Italy Cockcroft Institute, UK U Colima, Mexico UCPH Copenhagen, Denmark CSIC/IFIC, Spain **TU Darmstadt, Germany TU Delft, Netherlands DESY, Germany** DOE, Washington, USA ESS, Lund, Sweden TU Dresden, Germany Duke U, USA **EPFL**, Switzerland

UT Enschede, Netherlands U Geneva, Switzerland **Goethe U Frankfurt, Germany GSI**, Germany **GWNU**, Korea U. Guanajuato, Mexico Hellenic Open U, Greece **HEPHY**, Austria U Houston, USA IIT Kanpur, India **IFJ PAN Krakow, Poland INFN**, Italy **INP Minsk, Belarus** U Iowa, USA IPM, Iran UC Irvine, USA Istanbul Aydin U., Turkey JAI, UK JINR Dubna, Russia Jefferson LAB, USA FZ Jülich, Germany KAIST, Korea KEK, Japan KIAS, Korea King's College London, UK

KIT Karlsruhe, Germany KU, Seoul, Korea Korea U Sejong, Korea U. Liverpool, UK **U. Lund, Sweden** MAX IV, Lund, Sweden **MEPhl**, Russia **UNIMI**, Milan, Italy MIT, USA Northern Illinois U, USA **NC PHEP Minsk, Belarus** U Oxford, UK **PSI, Switzerland U. Rostock, Germany RTU**, Riga, Latvia UC Santa Barbara, USA Sapienza/Roma, Italy U Siegen, Germany **U Silesia**, Poland **TU** Tampere, Finland TOBB, Turkey **U** Twente, Netherlands **TU Vienna, Austria** Wigner RCP, Budapest, Hungary Wroclaw UT, Poland

EuroCirCol EU Horizon 2020 Grant

EC contributes with funding to FCC-hh study

- EuroCirCol H2020 Design Study, launched in June 2015, is in full swing now and makes essential contributions to the FCC-hh work packages:
- Arc & IR optics, 16 T dipole design, cryogenic beam vacuum system

Future Circular Collider Study

CMS

Large scale technical infrastructures Conceptual design study 2014 – 2018 Driven by international contributions Establish long-term liaisons with industry Collaborate on technology evolution (> 2025)

FCC Week 2017 May – 2 June 2017 Berlin. Germany