

Open questions in particle physics

Rolf Landua CERN

Head of Education and Public Outreach

The Standard model is complete

The Higgs field gives all particles their mass Its discovery opens a new era of physics

The evolution of the Universe is (rather) well understood

Standard Model

+ Gen. relativity = Universe?

No!

Less than 5% of the energy content of the universe are understood!

DARK MATTER? DARK ENERGY?

MERGE THE TWO 'STANDARD MODELS'

What is behind?

Explain the parameters of the two Standard Models (Particle physics and cosmology)

- Their existence points to a deeper origin
- Look for new model with fewer numbers or none
- Einstein: "there are no arbitrary constants ..."

Two frontiers:

- Higher energy ('direct production') LHC FCC CLIC
- Higher precision ('vacuum fluctuations')

Open known problems

The pattern of the standard model:

- Origin of particles ('periodic table')
- Origin of forces (their number, strengths)
- Origin of parameters (particle masses, mixing angles)

The Higgs mass - why 126 GeV?

Neutrino masses

- Zero in the standard model
- Experiment: non-zero, but very small (~0.01-0.1 eV)
- Relevant physics may be at much higher energies

The cosmological antimatter mystery

1) Make sure this is "the" Higgs boson

2) Search for new phenomena at the LHC

- a) Gravity and extra dimensions? (Weakness of G)
- b) Supersymmetric particles? (Dark matter particles)
- c) New fundamental interactions?
- d) New generations of quarks/leptons?
- e) Leptoquarks?
- f) Something completely new?

Interlude: Why is the Planck scale fundamental?

Max Planck (1899): Boundary for quantum theory, gravity, and space time on small scales

System of units based on three fundamental constants (G, c, h) Dimensionally independent - length, time, and mass (energy)

$$\ell_P = \sqrt{\frac{\hbar G}{c^3}} = 1.6 \times 10^{-35} \text{ m}$$

$$T_P = \sqrt{\frac{\hbar G}{c^5}} = 0.54 \times 10^{-43} \text{ s}$$

$$M_P = \sqrt{\frac{\hbar c}{G}} = 2.2 \times 10^{-8} \text{ kg}$$

$$E_P = M_P c^2 = 1.2 \times 10^{19} \text{ GeV}$$

Fig. 3. A light pulse is sent from A and reflected back from B. Its energy causes a distortion of the spacetime between A and B and hence affects the length ℓ .

Fig. 5. A region of space of size ℓ to be measured in time ℓ/c . As the size approaches the Planck length, there can occur wild variations in the geometry, including such things as black holes and wormholes.

http://www.stat.physik.uni-potsdam.de/~pikovsky/teaching/stud_seminar/Planck_scale.pdf

Interlude: The hierarchy problem with the Planck scale

- Why is the scale of particle physics (Higgs mass!) so much smaller than the Planck Scale (10⁻¹⁶)?
- Why is the observable Universe (10⁶⁰) so much bigger than the Planck Scale ?
- Why is the amount of dark energy so much smaller than the Planck Scale (10¹²⁰)?

Are we asking the wrong question?
Planck scale **not** fundamental? **Stablising mechanism (SUSY?)**

Why is Nature so stable?

Example: Gravity and extra dimensions?

Gravitational phenomena into collider arena

from G. Giudice's talk

Characteristic signatures of 'missing energy/mass'

Monophoton event

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Luni extign: 6M

Monojet event

How to go to increase collision energy of constituents?

CLIC: 3 TeV e⁺ e⁻ Collider?

Future circular collider (FCC) ?

New study (Kickoff: February 2014)

Circular collider in new tunnel

80- 100 km circumference (16-20 T magnets)

Circular proton-proton collider

100 TeV collision energy (p+p)

Also studied:

Circular electron-positron collider (VLEP) (350 GeV c.m. energy, t-tbar threshold)

Lepton-Hadron collider (like HERA) (50 TeV p + 100 GeV e)

Conceptual design report ~ 2018

CERN Schedule 2015 - 2035

... and beyond

European Strategy: "CERN should undertake design studies for accelerator projects in a global context, with emphasis on **proton-proton** and electron-positron **high-energy frontier machines.**"

FCC Study: p-p towards 100 TeV

Thank you.