Energia Oscura
(Dark Energy)
How do we know that Dark Energy is out there?
The cosmic inventory

Most of the Universe is Dark

\[\Omega_{\text{lum}} \sim 0.01 \]

\[\Omega_L \approx 0.040 \pm 0.005 \]

\[\Omega_{\text{DM}} \sim 0.23 \]

\[\Omega_{\text{de}} \sim 0.72 \]
The cosmic inventory

‘Definition’ of Dark Energy:

72%
23%
4%
1%
The cosmic inventory

‘Definition’ of Dark Energy:

Einstein equations

$$\frac{\dot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p)$$

The 'size' of the Universe

72 %

23 %

1 %

4 %
The cosmic inventory

‘Definition’ of Dark Energy:

Einstein equations

\[\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) \]

if \(\rho < -p/3 \) i.e. \(w := \frac{\rho}{p} < -\frac{1}{3} \)

\[\Rightarrow \text{acceleration!} \]
The cosmic inventory

‘Definition’ of Dark Energy:

\[\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p) \]

\[\text{if } \rho < -p/3 \quad \text{i.e. } w := \frac{\rho}{p} < -\frac{1}{3} \]

\[\Rightarrow \text{acceleration!} \]

special case:

\[\rho = -p \quad \text{i.e. } w = -1 \]

cosmological constant \(\Lambda \)

(constant as \(\rho_i \propto (1 + z)^{3(1+w_i)} \sim \text{const} \))
1) Supernovae type Ia: ‘standard candles’

\[L = 4\pi F d_L^2 \]

Luminosity distance (‘unknown’)
Flux (‘measured’)
Luminosity (‘known’)

The Evidence for DE

in a static Universe
1) Supernovae type Ia: ‘standard candles’

\[
\mathcal{L} = 4\pi F d_L^2 = 4\pi F \chi^2 (1 + z)^2
\]

- Luminosity (‘known’)
- Comoving distance (‘unknown’)

\((1 + z)\) due to redshift
\((1 + z)\) due to expansion

in an expanding Universe
1) Supernovae type Ia: ‘standard candles’

\[\mathcal{L} = 4\pi F d_L^2 = 4\pi F \chi^2 (1 + z)^2 \]

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \]

so \(\mathcal{L} \) as fnct of \(z \) and \(\Omega_M, \Omega_\Lambda \)
1) Supernovae type Ia: ‘standard candles’

\[\mathcal{L} = 4\pi F d_L^2 = 4\pi F \chi^2 (1 + z)^2 \]

The Evidence for DE

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \]

so \(\mathcal{L} \) as fnct of \(z \) and \(\Omega_M, \Omega_\Lambda \)

Riess et al., 1998, Astron. J. 116

about 60 SNe
The Evidence for DE

1) Supernovae type Ia: ‘standard candles’

\[L = 4\pi F d_L^2 = 4\pi F \chi^2 (1 + z)^2 \]

\(\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \)

Well, they are not really standard, let’s standardize them

B Band

as measured

peak \(\propto \) duration of lightcurve

light-curve timescale “stretch-factor” corrected

Calan/Tololo SNe Ia
1) Supernovae type Ia: ‘standard candles’

\[\mathcal{L} = 4\pi F d_L^2 = 4\pi F \chi^2 (1 + z)^2 \]

Luminosity \quad \text{comoving distance}

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \]

so \(\mathcal{L} \) as fnct of \(z \) and \(\Omega_M, \Omega_\Lambda \)

Riess et al., 1998, Astron. J. 116

about 60 SNe
The Evidence for DE

1) Supernovae type Ia: ‘standard candles’

\[\mathcal{L} = 4\pi F d_L^2 = 4\pi F \chi^2 (1 + z)^2 \]

Luminosity \hspace{2cm} \text{comoving distance}

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')}^3 + \Omega_\Lambda} \]

so \(\mathcal{L} \) as fnct of \(z \) and \(\Omega_M, \Omega_\Lambda \)

Bottom line: distant SNe appear \textbf{dimmer} than predicted in a Universe without DE, the Universe has \textbf{accelerated} in the past 5 Gyr

about 600 SNe

dimmer \hspace{2cm} brighter

Suzuki et al., 1105.3470
2) Baryon Acoustic Oscillations: ‘standard ruler’

\[L = \theta d_A \]

- Length ('known')
- Angular distance ('unknown')
- Angle ('measured')
The Evidence for DE

2) Baryon Acoustic Oscillations:

‘standard ruler’

\[L = \theta d_A = \theta \frac{\chi}{1 + z} \]

\[\chi(z) = \int_0^z \frac{dz'}{H(z')} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \]

so \(L \) as fnct of \(z \) and \(\Omega_M, \Omega_\Lambda \)

\(d_A \) comoving distance (‘unknown’)

\(\chi \) length (‘known’)

Length (‘known’)

\(\theta \)
The Evidence for DE

2) Baryon Acoustic Oscillations: ‘standard ruler’

\[L = \theta d_A = \theta \frac{\chi}{1 + z} \]

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \]

so \(L \) as fnct of \(z \) and \(\Omega_M, \Omega_\Lambda \)

What is the ‘ruler’?

D Eisenstein, cmb.as.arizona.edu/~eisenste/acousticpeak/
2) Baryon Acoustic Oscillations: ‘standard ruler’

\[L = \theta d_A = \theta \frac{\chi}{1 + z} \]

\(\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_\Lambda}} \)

What is the ‘ruler’?

D. Eisenstein, cmb.as.arizona.edu/~eisenste/acousticpeak/
2) Baryon Acoustic Oscillations:

`standard ruler`

\[L = \theta d_A = \theta \frac{\chi}{1 + z} \]

Length (`known')

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_{\Lambda}}} \]

so \(L \) as fnct of \(z \) and \(\Omega_M, \Omega_{\Lambda} \)

What is the `ruler'?
2) Baryon Acoustic Oscillations:

‘standard ruler’

\[L = \theta d_A = \theta \frac{\chi}{1 + z} \]

Length (‘known’)

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda}} \]

so \(L \) as function of \(z \) and \(\Omega_M, \Omega_\Lambda \)

What is the ‘ruler’? A pinch in the galaxy distribution
The Evidence for DE

2) Baryon Acoustic Oscillations:

`standard ruler`

\[L = \theta d_A = \theta \frac{\chi}{1 + z} \]

Length (`known`)

`comoving distance` (`unknown`)

\[\chi(z) = \int_0^z \frac{dz'}{H(z)} = \int_0^z \frac{dz'}{H_0 \sqrt{\Omega_M (1 + z')^3 + \Omega_{\Lambda}}} \]

so \(L \) as fnct of \(z \) and \(\Omega_M, \Omega_{\Lambda} \)

What is the `ruler`? A **pinch** in the galaxy distribution

NB: can actually do the same in \(z \) direction
The Evidence for DE

3) CMB:

In principle: another ‘standard ruler’ *:
the size of the sound horizon at $z \sim 1100$

$$r_s = \int c_s \, d\tau \quad c_s \simeq c/\sqrt{3}$$
3) CMB: In principle: another ‘standard ruler’ *:
the size of the sound horizon at $z \approx 1100$

$$r_s = \int c_s \, d\tau \quad c_s \simeq c/\sqrt{3}$$

(actually, it’s the ‘same’ ruler as BAO!)
3) CMB:

In principle: another ‘standard ruler’ *:
the size of the sound horizon at $z \simeq 1100$

$$r_s = \int c_s \, d\tau \quad c_s \simeq c/\sqrt{3}$$

In practice: DE is too subdominant at $z \simeq 1100$
there are degeneracies w other effects

(actually, it’s the ‘same’ ruler as BAO!)
The Evidence for DE

3) CMB:

In principle: another ‘standard ruler’ *:
the size of the sound horizon at $z \approx 1100$

$$r_s = \int c_s d\tau \quad c_s \approx c/\sqrt{3}$$

In practice: DE is too subdominant at $z \approx 1100$,
there are degeneracies w other effects

On the other hand: CMB fit gives

$$\Omega_{\text{tot}} \approx 1$$
$$\Omega_{\text{DM}} \approx 0.27$$
$$\Omega_{\Lambda} \approx 0.73$$

(actually, it’s the ‘same’ ruler as BAO!)
3) CMB:

In principle: another ‘standard ruler’ *:
the size of the sound horizon at $z \approx 1100$

$$r_s = \int c_s \, d\tau \quad c_s \simeq c/\sqrt{3}$$

In practice: DE is too subdominant at $z \approx 1100$,
there are degeneracies w other effects

On the other hand: CMB fit gives
$$\Omega_{\text{tot}} \simeq 1$$
$$\Omega_{\text{DM}} \simeq 0.27$$

Moreover, recently: using weak lensing of CMB light

$$\Omega_{\Lambda} = 0.61^{+0.14}_{-0.06}$$

* (actually, it’s the ‘same’ ruler as BAO!)

Sherwin et al., ACT Atacama Cosmology Telescope, 1105.0419
The Evidence for DE

- complementarity
- concordance

$\Omega_\Lambda = 0.725 \pm 0.016$
$\Omega_M = 0.274 \pm 0.007$

Other probes played / will play a role:
- cluster counts
- weak lensing...

Suzuki et al., 1105.3470
Komatsu et al., WMAP7, 1001.4538
What do we know of the (particle physics) properties of Dark Energy?
Nature of DE

\(\Lambda \) cosmological constant, \(w = -1 \)
Nature of DE

Λ cosmological constant, \(w = -1 \)

measured value \(\rho_\Lambda = 2.5 \times 10^{-47} \text{ GeV}^4 \)
\[\Lambda \text{ cosmological constant, } w = -1 \]

measured value \[\rho_\Lambda = 2.5 \times 10^{-47} \text{ GeV}^4 \]

estimate \[\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2} \]

\[\simeq \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2} \]
Nature of DE

Λ cosmological constant, $w = -1$

measured value $\rho_\Lambda = 2.5 \times 10^{-47}$ GeV4

estimate

\[
\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2}
\]

\[
\simeq \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2}
\]

if $k_{\text{max}} \sim M_{\text{Pl}}$

$\rho_\Lambda \sim 10^{74}$ GeV4
Nature of DE

Λ cosmological constant, $w = -1$

measured value $\rho_\Lambda = 2.5 \times 10^{-47}$ GeV4

estimate $\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + m^2}$

$\simeq \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2}$

if $k_{\text{max}} \sim M_{\text{Pl}}$ $\rho_\Lambda \sim 10^{74}$ GeV4

121 orders of magnitude!!
Nature of DE

\(\Lambda \) cosmological constant, \(w = -1 \)

measured value \(\rho_\Lambda = 2.5 \times 10^{-47} \text{ GeV}^4 \)

estimate \(\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2} \)

\(\approx \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2} \)

if \(k_{\text{max}} \sim M_{\text{Pl}} \) \(\rho_\Lambda \sim 10^{74} \text{ GeV}^4 \)

if SuSy \(k_{\text{max}} \sim 1 \text{ TeV} \) \(\rho_\Lambda \sim 10^{12} \text{ GeV}^4 \)

121 orders of magnitude!!

59 orders of magnitude!
\[\Lambda \text{ cosmological constant, } w = -1 \]

measured value \[\rho_\Lambda = 2.5 \times 10^{-47} \text{ GeV}^4 \]

estimate \[\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2} \]
\[\approx \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2} \]

if \(k_{\text{max}} \sim M_{\text{Pl}} \) \[\rho_\Lambda \sim 10^{74} \text{ GeV}^4 \]

if SuSy \(k_{\text{max}} \sim 1 \text{ TeV} \) \[\rho_\Lambda \sim 10^{12} \text{ GeV}^4 \]

121 orders of magnitude!!

59 orders of magnitude!

The worst fine tuning problem. Ever.
Nature of DE

\[\Lambda \] cosmological constant, \(w = -1 \)

measured value \(\rho_\Lambda = 2.5 \times 10^{-47} \text{ GeV}^4 \)
estimate \(\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2} \)

\(\approx \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2} \)

if \(k_{\text{max}} \sim M_{\text{Pl}} \) \(\rho_\Lambda \sim 10^{74} \text{ GeV}^4 \)

if SuSy \(k_{\text{max}} \sim 1 \text{ TeV} \) \(\rho_\Lambda \sim 10^{12} \text{ GeV}^4 \)

evolution in time

The worst fine tuning problem. Ever.
Nature of DE

Λ cosmological constant, $w = -1$

measured value $\rho_\Lambda = 2.5 \times 10^{-47}$ GeV4

estimate $\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3 k}{(2\pi)^3} \sqrt{k^2 + m^2}$

$\simeq \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2}$

if $k_{\text{max}} \sim M_{\text{Pl}}$ $\rho_\Lambda \sim 10^{74}$ GeV4

if SuSy $k_{\text{max}} \sim 1$ TeV $\rho_\Lambda \sim 10^{12}$ GeV4

The worst fine tuning problem. Ever.

Nature of DE

\[\Lambda \text{ cosmological constant}, \ w = -1 \]

measured value \[\rho_\Lambda = 2.5 \times 10^{-47} \text{ GeV}^4 \]

estimate \[\rho_{\text{vac}} = \frac{1}{2} \sum_{\text{particles}} g_i \int_0^{k_{\text{max}}} \frac{d^3k}{(2\pi)^3} \frac{k^4}{\sqrt{k^2 + m^2}} \approx \sum_{\text{particles}} \frac{g_i k_{\text{max}}^4}{16 \pi^2} \]

if \(k_{\text{max}} \sim M_{\text{Pl}} \) \[\rho_\Lambda \sim 10^{74} \text{ GeV}^4 \]

if SuSy \(k_{\text{max}} \sim 1 \text{ TeV} \) \[\rho_\Lambda \sim 10^{12} \text{ GeV}^4 \]

evolution in time

The worst fine tuning problem. Ever.

Anthropism? Multiverse?
Nature of DE

Φ ‘quintessence’, $w > -1$
Nature of DE

Φ ‘quintessence’, $w > -1$

$$\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V$$

$$p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V$$

$$w_\Phi = -1 + \frac{\dot{\Phi}^2}{\dot{\Phi}^2 + 2V}$$

so if $\dot{\Phi} \ll V$ → Dark Energy
Nature of DE

\(\Phi \), 'quintessence', \(w > -1 \)

\[
\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V
\]

\[
p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V
\]

\[
w_\Phi = -1 + \frac{\dot{\Phi}^2}{\dot{\Phi}^2 + 2V}
\]

so if \(\dot{\Phi} \ll V \) → Dark Energy
\(\Phi \) ‘quintessence’, \(w > -1 \)

\[
\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V
\]

\[
p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V
\]

\[
w_\Phi = -1 + \frac{\dot{\Phi}^2}{\dot{\Phi}^2 + 2V}
\]

so if \(\dot{\Phi} \ll V \) \(\rightarrow \) \text{Dark Energy}

Modified Gravity (\(f(R) \), DGP...)
Nature of DE

Φ ‘quintessence’, $w > -1$

$$\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V$$

$$p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V$$

$$w_\Phi = -1 + \frac{\dot{\Phi}^2}{\dot{\Phi}^2 + 2V}$$

so if $\dot{\Phi} \ll V$ → Dark Energy

Modified Gravity (f(R), DGP...)

Swiss cheese, local voids...
Nature of DE

\[\Phi \text{ 'quintessence', } w > -1 \]

\[\rho_\Phi = \frac{1}{2} \dot{\Phi}^2 + V \]

\[p_\Phi = \frac{1}{2} \dot{\Phi}^2 - V \]

\[w_\Phi = -1 + \frac{\dot{\Phi}^2}{\dot{\Phi}^2 + 2V} \]

so if \(\dot{\Phi} \ll V \) \rightarrow \text{Dark Energy}

Modified Gravity (f(R), DGP...)

Swiss cheese, local voids...
Conclusions (for today)

Dark Matter exists

Dark Energy exists

We have (almost) no clue of what they are, but many hints and many ideas.

The ‘era of data’ is now for DM.

The ‘era of data’ is coming for DE.

May you live in exciting times.