

ACCELERATOR PHYSICS AND TECHNOLOGY - EPISODE II

E. Todesco Magnet, Superconductors and Cryostats Group Technology Department CERN, Geneva, Switzerland

CONTENTS

- Limits of Nb-Ti magnets
- Towards larger fields: Nb₃Sn and HTS
- Limitations to current density: stress, protection

RECALL ON CRITICAL SURFACE

- Critical current density vs. field for different materials (semilog scale) at 4.2 K
 - To remember: more critical current density, less field

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al]

LIMITS IN NB-TI MAGNETS

- Nb-Ti loses superconductivity at 13 T, 1.9 K why 8 T is the limit ?
 - Cost
 - Stability
- We start with cost
 - Field is proportional to current density so called loadline
 - At a certain point (B(j),j) crosses the critical surface this is the limit
 - How to have more field? Put more coil, and lower the loadline
 - But this is an expensive game!

Critical surface for Nb-Ti: j versus B and magnet loadline

SUPERCONDUCTING MAGNET DESIC

- We have computed what field can be reached for a sector coil of width w for Nb-Ti goes as $\sim w/(1+w)$
 - There is a slow saturation towards 13 T
 - The last Tesla are very expensive in terms of coil, so we could go to 13 T, but we do not go: not for lack of physics but for lack of \$\$\$\$
 - LHC dipole has been set on 30 mm coil width, giving ~10 T

SUPERCONDUCTING MAGNET DESIC

- Stability: one cannot work on the critical surface
 - Any disturbance producing energy (beam loss, coil movements under Lorentz forces) increases the temperature and the superconductivity is lost

- So magnet work at 80% of loadline
- LHC dipoles are giving the maximum field 10 T given by a reasonable amount of coil (30 mm) for Nb-Ti at 1.9 K

 With a 20% operational margin one gets ~ 8 T which is the baseline value

This corresponds to 2 K of margin

Margin of the main dipoles in four accelerators

	Nominal			Actual		
	Temp. (K)	Field (T)	Margin	Temp. (K)	Field (T)	Margin
Tevatron	4.6	4.3	4%	4.6	4.2	6%
Hera	4.6	4.7	23%	3.9	5.3	23%
RHIC	4.5	3.5	30%	4.5	3.5	30%
LHC	1.9	8.3	14%	1.9	7.8*	19%

IRON SHIELDING

- Final estimate of the transverse size of LHC main dipoles
 - Magnet aperture radius: 30 mm for the beam
 - Coil width: 30 mm to get 8 T
 - Collars
 - Lorentz forces need a mechanical st
 - Yoke
 - This is needed to shield: iron takes we have 8 T in 30 mm so we need 30/2*8=120 mm of iron
 - Total about 500 mm diameter
 - For the Terminator-3 accelerator, we have 640 T in 30 mm, we would need 30/2*640~10 m of iron

 \rightarrow no space in their tunnel

What can happen if you do not shield your magnet

CONTENTS

- Limits of Nb-Ti magnets
- Towards larger fields: Nb₃Sn and HTS
- Limitations to current density: stress, protection

- Yesterday we have seen the Nb-Ti accelerator magnets are limited at 8 T
 - Critical surface (cost and stability)
 - Nb₃Sn has a wider critical surface: covers up to ~15 T

- Nb₃Sn has a wider critical surface
 - But the material is more difficult to manufacture

• It has never been used in accelerators, but tested successfully in short models and used in solenoids

• With Nb₃Sn one could go up to 15-18 T (-20%)

• World record is 13.5 T (D20,HD2, Berkeley)

critical J-H-T surface 10° Nb,Sn Nb-Ti 10° Nb,Sn Nb-Ti temperature (K)

1 107

Critical surface for Nb-Ti and Nb₃Sn

Field versus coil thickness for Nb-Ti and Nb₃Sn at 1.9 K

 Summary of accelerator dipoles, Nb-Ti and Nb₃Sn, built and planned

Bore field in dipoles: operational for Nb-Ti and maximum achieved for Nb3Sn

- Nb₃Sn is limited at 15 T
 - HTS materials have the amazing feature of having a critical surface with very low slope dj/dB
 - Today they are at 300-400 A/mm2 in the range 15-40 T

• We just need 20% more and huge spaces will be opened!

CONTENTS

- Limits of Nb-Ti magnets
- Towards larger fields: Nb₃Sn and HTS
- Limitations to current density: stress, protection

LIMITATIONS TO CURRENT DENSIT

- What's behind this plot?
 - Electromagnet:

$$B[T] \approx 7 \times 10^{-4} j[A/\text{mm}^2]w[\text{mm}]$$

Why most of magnets have similar current density?

Bore field in dipoles: operational for Nb-Ti and maximum achieved for Nb3Sn

LIMITATIONS TO CURRENT DENSITY

• The Terminator-3 accelerator has 640 T with 200 mm (?) coil width \rightarrow 5000 A/mm² overall j (~10 times larger than usual accelerator magnets) able to withstand 640 T

- Surprise: even though we had a material with such a nice *B* vs *j* performance we would not be able to exploit it
- Going to very large current densities pose several issues
 - (i) Stability

(ii) Stress

(iii) Protection

We will deal only with protection to give an example

LIMITATIONS to CURRENT DENSITY: PROTECTION

- In case of an irreversible resistive transition (quench) we have a dangerous situation
 - Superconductors are very bad conductors above the transition
 - That's one of the reasons for having copper in the cable
 - Joule effect (proportional to j^2) heats the coil

$$\rho(T)[j(t)]^{2}dt = c_{p}(T)dT \qquad \int_{0}^{\infty} [I(t)]^{2}dt = A_{Cu}A \int_{T_{0}}^{T_{\text{max}}} \frac{c_{p}^{ave}(T)}{\rho_{Cu}(T)}dT$$

- If the current is not dumped rapidly enough the cable melts
 - Order of magnitude of time to dump the current: 0.1-0.5 s
- It is a RL circuit, time constant $\tau = L/R$
 - Where R is the resistance of the magnet we should make it quench everywhere to increase R and lower τ

LIMITATIONS to CURRENT DENSITY: PROTECTION

- Best situation: all magnet quenches so energy is spread everywhere
 - Specific heat vary a lot in the range 2-300 K very non linear problem
 - Enthalpy of a typical cable from 2 to 300 K is 0.6 J/mm³
 - So energy density in the magnet must be smaller than this limit
 - If we want to make a magnet with given aperture and field, too small coil gives too large energy density → physical limit
- Nb-Ti typically operate at 0.06 J/mm³
 - This is 1/10, meaning that 3 times larger current density reaches the enthalpy limit
- For Nb₃Sn typically we are at twice this value (0.1 J/mm^3)
- With these numbers, one has to react in 50 100 ms
 - (first thing: switch power off)

LIMITATIONS to CURRENT DENSITY

- The Terminator-3 accelerator has 640 T over 50 mm aperture with 200 mm coil width
 - Exercise: rough estimate of energy density
 - $B^2/2\mu$ over a circle of radius (50+200)/2 mm \rightarrow 11.GJ/m of energy
 - Coil area: sector of thickness 200 mm over a radius of 25 mm \rightarrow 0.08 m²
 - This gives 130 J/mm³ l, 250 times larger then the enthalpy limit (perhaps the most sci-fi number of the movie)

CONCLUSIONS

- Several factors limiting the highest fields
 - Superconducting properties –ability to tolerate magnetic field in the coil
 - Limit at 13 T for Nb-Ti, 25 T for Nb₃Sn
 - HTS opens towards 50 T
- Necessity of margin
 - You cannot work on the critical surface but how much to step back?
- The cost to exploit the last Tesla of a superconductor is large
 - In terms of size, money (cost of superconductor)
 - That's why practial limits for Nb-Ti is 8 T and for Nb₃Sn is 15 T