Lessons from 2015

- Scrubbing at 450 GeV allows to mitigate e-cloud instabilities and beam degradation occurring at low energy
- After this stage, relying on ADT and high Q' and octupoles, it is possible to preserve
 good beam quality from injection to collision in spite of the e-cloud still present in
 the machine, however high heat load in the arcs
- Parasitic scrubbing accumulated during intensity ramp up and physics run has lowered the heat load in the dipoles by roughly a factor two (in two months)
 - → The doses needed to see an evolution at this stage are very large, practically incompatible with a dedicated scrubbing run
 - → Relatively high intensity runs without electron cloud can cause deconditioning, visible both in heat load and beam quality, for which quick re-conditioning fills might be needed
- Doublet trains were tested for the first time in the LHC during the Scrubbing Run
 - → e-cloud enhancement could be confirmed experimentally
 - → Due to violent e-cloud instabilities, it was impossible to inject enough beam and keep sufficient beam quality for efficient scrubbing with doublets

Proposal for the 2016 start-up

- Arcs will be kept under vacuum → scrubbing should be at least partially preserved during the YETS
- Scrubbing proposal for 2016:
 - 4 days scrubbing run deemed reasonable to recover high intensities at 450 GeV
 (assuming all necessary setup for high intensity is done before, e.g. injection, ADT)
 - A few "refresh" scrubbing fills during first 1-2 weeks of intensity ramp up in physics (to fight deconditioning)
 - O During intensity ramp up:
 - → As long as no limitation is encountered, try to maximize electron dose by using long trains (up to 288b. per injection) → it will pay off later
 - → If/when cryo limit is reached, move to optimized filling schemes to gain luminosity
 - → Use physics fills to accumulate more scrubbing for further intensity increase
- **Doublet test** to be performed when **SEY is sufficiently low** (e.g. at least after recovering the end-2015 situation) to check whether good beam quality can be preserved
 - → In case of positive outcome, **first scrubbing stores with doublets**

Apr				bbing May			June						
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	4	11	18	25	2	9	Whit 16			6	13	20	27
Tu							VdM —		beta* 2.5 km dev.				
We							Vulvi			TS1			
Th		commissioni with beam	_	\	Ascension								
Fr	with beam				May Day comp				MD 1				
Sa						tensity ramp-u							
Su				1st May	Scru	bbing as requi	ired						

Some points to check in preparation

- Setup to be done beforehand
 - 25 ns beam in injectors
 - ADT, diagnostics (including ObsBox and bunch-by-bunch tune)
- Scrubbing with some beam screens at higher temperature (~100 K) some test cells
- Cryogenic transients and limits
- TDI (do we still have pressure interlocks, has the retraction policy stayed the same?)
- MKI-Q5 (we know from 2015 that it could limit the total intensity in beam 2)
- Magnetic field in the experimental areas (discussed with G. Arduini, G. Bregliozzi, M. Taborelli, communicated to M. Lamont):
 - Turning off the magnetic field of the CMS, ATLAS, ALICE solenoids for the scrubbing run does not seem to be necessary, because
 - ✓ In terms of SEY, the solenoid field in standard operation anyway inhibits the electron cloud formation + SEY is low due to the NEG coating
 - ✓ Vacuum-wise, the area is 99%+ NEG-coated, no additional surface cleaning needed at this stage
 - LHCb dipole should be on with positive polarity