

Beam screen cryogenic control improvements for the LHC run 2

B. Bradu*, E. Rogez, E. Blanco-Viñuela, G. Ferlin, A. Tovar-Gonzalez, K. Brodzinski

European Organization for Nuclear Research (CERN)

Contents

- Introduction
- Beam screen and cryoplant constraints
- LHC beam screen control scheme
- Control validation in simulation
- Results during LHC Run 2
- Conclusion

Introduction

- LHC Beam Screens
 - Ensure a good beam vacuum
 - Limit heat loads on the 1.9 K cold mass
 - Independent SC He cooling loop per half-cell (53 meters in arc)
 - > 485 BS cooling loops over the 27 km of the LHC
- LHC beam screen heat loads between 4.5 K and 20 K
 - > LHC Nominal Design: 85 W per half-cell
 - ✓ Synchrotron radiations: 18 W/half-cell
 - ✓ Image current: 19 W/half-cell
 - ✓ Electron cloud: 48 W/half-cell

LHC Run 1 Vs Run 2

- **Run 1** (2010→2012)
 - ➢ E = 4 TeV
 - Bunch number: ~1400 bunches (1/2 nominal)
 - > Bunch spacing = 50 ns \rightarrow No electron clouds
 - Beam screen heat load ~ 10 W/hc in arc(but 100 W/hc in IT)

■ **Run 2** (2015→2018)

- ➢ E = 6.5 TeV
- Bunch number: ~2800 bunches (nominal)
- > Bunch spacing = 25 ns \rightarrow important electron clouds
- Beam screen heat load ~ 85 W/hc expected in arc (lower in IT)
 - > Up to 145 W/half-cell measured in 2015 with 2244 bunches !!

Beam screen and cryoplant constraints

Beam screen constraints

- Stable temperature around 20 K
 - ✓ Mini: 6 K/13 K (high/low flow) to avoid thermo-hydraulic oscillations
 - ✓ Maxi: 40 K during 30 min for vacuum (ideally below 30 K)

Cryoplant constraints

- 8 refrigerators over the 27 km
- Refrigeration power is optimal for beam screens at 20 K
- Refrigeration power for BS heat loads (4.5 K 20 K)
 - ✓ Installed capacity = 116 W/hc
 - ✓ Run2: 160 W/hc thanks to less heat loads at 1.9 K
 - ✓ But limitation of 135 W/hc for S23 & S78 in 2015

Beam screen dynamics

- Beam induced heat loads time constants
 - ✓ Beam injection: ~10 min (+5 min of delay)
 - ✓ Beam Dump: ~2 min (+5 min of delay)
- Refrigerator time constants
 - HP adaptation: ~ 1 hour
 - ✓ Turbine power: ~20 min
 - ✓ Heater in phase separator: ~2 min
- Beam screen circuit time constants
 - ✓ Valve action: ~15 min (+5 min of delay)
 - ✓ Heater action: ~30 min (+10 min of delay)
- For Run 2:
 - Need a faster reaction for BS cooling
 - Need to minimize overshoot at beam injection and energy ramping
 - Need to optimize refrigeration power

LHC beam screen control scheme

Feed-Forward Design for the valve

Output temperature: $TT_{947} = P \cdot CV_{947} + D \cdot Q_{dbs}$

With:
$$P = \frac{K \cdot e^{-\tau \cdot s}}{1 + T \cdot s}$$
 and $D = \frac{K_d \cdot e^{-\tau_d \cdot s}}{1 + T_d \cdot s}$

 $\Rightarrow TT_{947} = P \cdot TC_{947} \cdot e + P \cdot FF_1 \cdot Q_{dbs} + D \cdot Q_{dbs}$

To remove beam induced effect: $FF_1 = -D \cdot P^{-1}$

$$\Rightarrow \quad FF_1 = -\frac{K_d}{K} \cdot \frac{(1+T \cdot s) \cdot e^{(\tau-\tau_d) \cdot s}}{(1+T_d \cdot s)}$$

After identification with real measurements performed in 2015 in arc half-cells:

K	T (s)	τ (s)	K_d	T_d (s)	τ_d (s)
0.8	960	300	0.2	40	250

→
$$FF_1 \approx -\frac{(K_d/K)}{(1+T_d \cdot s)}$$

(Similar approach is performed for the feed-forward action on the heater)

B. Bradu. Beam screen cryogenic control improvements for the LHC run 2

Beam Screen heat load estimation

$$Q_{dbs} = Q_{sr} + Q_{ic} + Q_{ec}$$

 $Q_{sr} = Q_{srnom} \cdot L \cdot \left(\frac{E}{E_{nom}}\right)^4 \cdot \left(\frac{Nb}{Nb_{nom}}\right) \cdot \left(\frac{nb}{nb_{nom}}\right) \quad (1) \text{ Synchrotron radiations}$

$$Q_{ic} = Q_{icnom} \cdot L \cdot \left(\frac{0.6 \cdot E + 2800}{E_{nom}}\right)^{0.5} \cdot \left(\frac{Nb}{Nb_{nom}}\right)^2 \cdot \left(\frac{nb}{nb_{nom}}\right) \cdot \left(\frac{\sigma}{\sigma_{nom}}\right)^p$$
(2) Image current

$$Q_{ec} = \left[K_{eci} \cdot \frac{q_{eci}}{2} \cdot \left(1 - \frac{E - E_{inj}}{E_{ramp} - E_{inj}} \right) + K_{ecr} \cdot \frac{q_{ecr}}{2} \cdot \left(\frac{E - E_{inj}}{E_{ramp} - E_{inj}} \right) \right] \cdot nb \cdot \frac{Nb}{Nb_{nom}}$$
(3) Electron cloud

SR and IC comes from LHC design reports and are OK with measurements

- EC mentioned in LHC design report is much lower than measurements
 - ✓ New EC equation based on physics
 - Equation scaled according to measurements in different sectors (qeci/qecr)
 - ✓ Equation scaled according to machine cleaning (Keci and Kecr)

BS heat load estimation

Validation of scaling laws with LHC fills at the end of October 2015

BS heat load estimation

Validation of scaling laws with LHC fills at the end of October 2015

Heat Load repartition over LHC

Heat load distribution during Fill 4569 (8xARC)

Feed-forward implementation

- 1 common feed-forward action for each ARC
 - From Q9 to Q9
 - 8 ARC in total
- 1 specific feed-forward action per LSS half-cell
 - From Q1 to Q7
 - 87 half-cells in total

Control validation in simulation

- Simulations performed with Ecosimpro and CRYOLIB library
- Model validation with real data obtained during the LHC Run 1
- Simulation for a heat load of 130 W per half-cell
- Comparison between 3 control schemes (PI alone / PI+jump / PI+FF)
- Validation of the feed-forward design

BS heat loads in Run2 (2015)

Results with improved control during LHC Run2 (2015)

Results obtained during the LHC fill #4569 in November 2015 (2244 bunches @ 6.5 TeV)

Conclusion

- Electron clouds generate important dynamic heat loads in LHC
 - Up to 7.5 kW for 1 sector: equivalent 3.5 kW @ 4.5 K (20% of total installed refrigeration power)
- Classic feedback controllers cannot manage correctly the fast transients
 - Too important overshoot
 - > Refrigeration power not optimized during transients
 - Instabilities
- Several new control schemes have been studied in simulation
 - Feed-forward actions on beam screen valves and heaters demonstrate good results
- The improved control scheme has been deployed in 2015
 - > Temperature overshoot have been killed by the improved control scheme
 - Refrigeration power is optimized during transients
 - > The LHC managed to reach 2244 bunches @ 6.5 TeV in 2015
- In 2016
 - > Refrigeration power dedicated to BS should be increased to 160 W/hc over the LHC (S23/S78 to be confirmed)
 - Feed-forward control will be improved with a better estimation of the electron cloud heat loads based on 2015 measurements

