On-line tool to calculate the expected heat load from impedance (and synchrotron radiation)

> Benoit, Giovanni and Gianni with the help of

Elias Metral, Michael Schenck, Carlo Zannini and BE-CO

Available options for impedance

• Implement existing full scripts in a dedicated display

→ existing Matlab and python scripts already used by Carlo and Michael for scrubbing and SPS MKP heating

 \rightarrow Matlab script used for LHC beam induced heating

• Implement simple formula in Timber and use the existing framework to display it in the fixed display.

Full scripts

- reconstruct the beam intensity profile (from bunch by bunch intensities and bunch lengths stored in Timber by the FBCT and BQM)
- Compute the FFT to obtain the beam spectrum
- Interpolate the impedance and multiply in frequency domain to obtain the power loss
- Need to assume a distribution (e.g. Gaussian, cos^2)

Full scripts

- An alternative could be to use directly the beam spectrum that is also stored in Timber (but has not been working well in 2015 due to issues with the spectrum analyzers)
- Interpolate the impedance and multiply in frequency domain to obtain the power loss

 \rightarrow No need to assume a distribution, but could be also more affected by noise

→ Proposal: implement both computations before high intensity in 2016, with priority to the first option

Full scripts

- Requires implementation to be available in the CCC
- Should use the framework that is being put in place by Riccardo and Lee for other tools
- Unclear whether this can be available for the scrubbing run

"Simple" power loss formula

- See for instance, A. Chao's book or G. Rumolo and E. Metral at USPAS course in 2010
- Assumes Gaussian bunch and thick wall formula for the resistive impedance.

$$\frac{Z_{rw}^{||}(\omega)}{L} = \sqrt{\frac{2}{\sigma Z_0 c}} \frac{Z_0}{4\pi b} |\omega|^{\frac{1}{2}} [1 - i\operatorname{sgn}(\omega)] \Rightarrow \frac{\Delta E}{L} = -\frac{N_b^2 e^2 c}{4\pi^2 b \sigma_z^{3/2}} \sqrt{\frac{Z_0}{2\sigma}} \cdot \Gamma\left(\frac{3}{4}\right)$$

Giovanni (USPAS course)

• Assumes uniform filling.

• Assuming a Gaussian bunch $P_{loss/m}^{G,RW,1\,\text{layer}} = \frac{1}{2 \pi R} \Gamma\left(\frac{3}{4}\right) \underbrace{M}_{b} \left(\frac{N_{b} e}{2 \pi}\right)^{2} \sqrt{\frac{c \rho Z_{0}}{2}} \sigma_{t}^{-3/2} \approx 85 \,\text{mW/m}$

Elias (Chamonix 2012)

• Assumes a factor 1.4 for the weld (C. Zannini).

"Simple" power loss formula

• What error do we do in assuming the thick wall formula?

 \rightarrow No visible difference in the frequency range of interest for the case of copper coated stainless steel beam screen

"Simple" power loss formula

- What error do we do with that simple formula?
- →Example of fill 4467: 1608 bunches, 1.02e11 p/b

→full formula with constant bunch length and intensity: Ploss=329.5 mW/m
 →full formula with constant bunch length and meas. intensity: Ploss=330 mW/m
 →full formula with measured bunch length and intensity: Ploss=331 mW/m
 →Simple formula: Ploss=329 mW/m
 →Formula using the measured spectrum: Ploss= 400 mW

Comparison between measured and reconstructed spectra

 \rightarrow measured peaks are smaller and wider. One should try and increase the resolution next year

Simple formula

- An alternative could be to use directly the beam spectrum that is also stored in Timber (but has not been working well in 2015 due to issues with the spectrum analyzers)
- Interpolate the impedance and multiply in frequency domain to obtain the power loss

 \rightarrow No need to assume a distribution, but could be also more affected by noise

→ Proposal: implement simple formula fast in Timber and use existing fixed display framework used for heatload

Implementation in Timber

[Int1]

[Int2]

[N1]

[N2]

[E]

From the following existing variables:

- LHC.BCTDC.A6R4.B1:BEAM_INTENSITY
- LHC.BCTDC.A6R4.B2:BEAM_INTENSITY
- LHC.BSRA.US45.B1:ABORT_GAP_ENERGY
- LHC.BQM.B1:NO_BUNCHES
- LHC.BQM.B2:NO_BUNCHES
- LHC.BQM.B1:BUNCH_LENGTH_MEAN [len1]
- LHC.BQM.B1:BUNCH_LENGTH_MEAN [len2]

We would like to compute following virtual variables	
LHC.QBS_CALCULATED_ARC_IMPED.B1	[Pimp1] in W/half cell
LHC.QBS_CALCULATED_ARC_IMPED.B2	[Pimp2] in W/half cell
LHC.QBS_CALCULATED_ARC_SYNCH_RAD.B1	[Psr1] in W/half cell
LHC.QBS_CALCULATED_ARC_SYNCH_RAD.B2	[Psr2] in W/half cell
LHC.QBS_CALCULATED_ARC.TOTAL	[Ptot] in W/half cell
Timescaled in a fixed interval (average over 1 minute).	

• The formulas are (in "Matlab" style):

```
Pimp1 = 0.4601e-39 * (len1/4)^-1.5 * Int1^2 * N1^-1 *sqrt(1.0048+ 3.1540e-04 * E)

Pimp2 = 0.4601e-39 * (len2/4)^-1.5 * Int2^2 * N2^-1 *sqrt(1.0048+ 3.1540e-04 * E)

Psr1 = Int1* 3.2292e+14^-1 * 0.33 * 53.4 * (E/7000)^4

Psr2 = Int2* 3.2292e+14^-1 * 0.33 * 53.4 * (E/7000)^4

Ptot= Pimp1 + Pimp2 + Psr1 + Psr2
```

Summary

- Two options for getting beam screen heat load:
 - Full formula implementation will require development
 - Simple formula should profit from the framework of Timber variables used by Fixed displays, which is already available since 2015
 - The implementation should be ready before Easter, thanks to the help of BE-CO (Nikolay Tsvetkov)