Searches for Dark Matter and Supersymmetry at 13 TeV with CMS Dominick Olivito University of California, San Diego #### Overview - The Standard Model, Dark Matter, and Supersymmetry - The Large Hadron Collider, the CMS detector and trigger - Searching for E_{T}^{miss} + jets: the M_{T2} analysis - Searching for $E_T^{miss} + \ell + \ell + \ell + jets$: on and off the Z resonance - Coming next: searches for electroweak Supersymmetry ### The Standard Model of physics works wonderfully, and is incomplete - Unexplained observations: - How does dark matter interact with known particles? - Some theoretical issues: - Why is the Higgs boson mass stable at 125 GeV? - Do the strong, weak, and electromagnetic forces unite at some high scale? ### Dark Matter is more abundant than known matter, but remains mysterious ### Supersymmetry (SUSY) can explain Dark Matter and solve other problems ### Supersymmetry (SUSY) can explain Dark Matter and solve other problems The lightest SUSY particle (LSP) is a dark matter candidate if stable due to R-parity #### Supersymmetry (SUSY) can explain Dark Matter and solve other problems The top squark can stabilize Higgs mass by canceling loop effects from the Standard Model top quark ### Dark Matter particles could be produced in proton-proton collisions The SUSY LSP is part of a broader class of Weakly Interacting Massive Particles (WIMPs) that could appear Anti-social With minimal additional particles Or social With many additional particles #### The Large Hadron Collider (LHC) is our instrument at the energy frontier 2015: pp center of mass energy increased from 8 to 13 TeV #### Strong production has the highest SUSY cross section - Highest mass limits from LHC Run 1 - Benefits the most from 8 → 13 TeV energy increase ## Missing Transverse Momentum (E_{T}^{miss}) is the signature of Dark Matter - WIMPs do not interact and escape the detector - We infer their presence through an imbalance in the event - Strong production or initial state radiation → hadronic jets ### The CMS detector measures collision decay products precisely to infer $E_{\scriptscriptstyle T}^{\rm miss}$ ### The CMS trigger quickly rejects the uninteresting 99.998% of events - Collision events not selected are lost forever - Developed several of the trigger paths used in these analyses: - Tracker-based reconstruction for single muons - Complementary to existing outside-in reconstruction - Improved efficiency especially at lower p_⊤ - Tracker-based isolation for muons - Improved speed and efficiency - Single photons, H_T (scalar sum of jet p_T), $H_T+E_T^{miss}$ #### The triggers we use are highly efficient Tracker muon reconstruction (IsoTkMu20) complements standard outside-in reco $H_T + E_T^{miss}$ path used for M_{T2} analysis #### Searching for E_T^{miss} + jets: the M_{T2} analysis ## The M_{T2} analysis searches for E_{T}^{miss} + jets as inclusively as possible - Our baseline selection is as loose as possible given our triggers and targeted reduction of instrumental backgrounds - We categorize events using four variables: H_T, N_J, N_B, M_{T2} - Main backgrounds: - **Z** → **νν**+jets: E_Tmiss from νν - most SUSY-like background, estimated primarily using γ +jets - "Lost lepton": $W \rightarrow \ell \pm \nu$ in W+jets and ttbar: E_T^{miss} from ν - reduce by vetoing on charged lepton, estimate with found lepton sample - QCD multijets: E_Tmiss from jet mismeasurement - reduce with M_{T2} and other cuts, estimate from mismeasured jet sample - We perform a simultaneous likelihood fit over all signal bins to place constraints on new physics models #### We categorize events for sensitivity to a broad range of signatures - Unknown mass scale and mass splittings - H_T : scalar sum of jet $p_T \rightarrow visible$ energy scale - Bins from 200 to > 1500 GeV - M_{T2}: missing energy scale - Bins from 200 to > 1000 GeV - Unknown parton multiplicity - N_J : number of jets with $p_T > 30$ GeV, $|\eta| < 2.5$ - Bins from 1 to ≥7 - Unknown flavor content - N_B : number of b-tagged jets, $p_T > 20$ GeV, $|\eta| < 2.5$ - Bins from 0 to ≥3 ## The "stransverse mass" M_{T2} strongly suppresses jet mismeasurement - M_{T2} is a generalization of M_T for decay chains with two unobserved particles - Typical in SUSY events - As visible objects, use jets clustered into 2 hemispheres ## The "stransverse mass" M_{T2} strongly suppresses jet mismeasurement - M_{T2} is a generalization of M_T for decay chains with two unobserved particles - Typical in SUSY events - As visible objects, use jets clustered into 2 hemispheres #### SUSY signals: - Symmetric hemispheres - Small-ish angle - $M_{T2} \sim E_{T}$ miss #### QCD multijet events: - Hemispheres back-to-back - Or asymmetric - $M_{T2} << E_T$ miss $$M_{T2} \simeq 2 p_T^{vis(1)} p_T^{vis(2)} (1 + \cos(\Delta \phi_{1,2}))$$ Reject multijets: $$-\Delta\phi_{\min} > 0.3$$ • $\Delta \phi_{\min} = \min(\Delta \phi(E_{T}^{\min}, j_{1,2,3,4}))$ #### Reject multijets: $$-\Delta\phi_{\min} > 0.3$$ $$-\Delta\phi_{\min} = \min(\Delta\phi(E_{T}^{\text{miss}}, j_{1,2,3,4}))$$ #### Reject multijets: - $-\frac{\left|\overrightarrow{H}_{T}^{miss}-\overrightarrow{E}_{T}^{miss}\right|}{E_{T}^{miss}}<0.5$ #### Reject W → ℓ±v: Charged lepton/track veto #### We categorize events based on N_J , N_B #### **Jet Multiplicity Regions** #### Then using H_T and M_{T2} for multijet ^{*} Combine bins in M_{T_2} / jet p_T to have at least ¹ expected background event for each (H_T,N₁,N_B) region #### Or the jet p_T for monojet events ^{*} Combine bins in M_{T_2} / jet p_T to have at least 1 expected background event for each (H_T, N_J, N_B) region #### We have in total 172 exclusive bins 1 expected background event for each (H_T, N_J, N_B) region ^{*} Combine bins in M_{T_2} / jet p_T to have at least #### $Z \rightarrow vv$: the closest impostor to Dark Matter in the Standard Model - Can be suppressed only with kinematic/multiplicity variables: - H_T , N_J , N_B , M_{T2} E_Tmiss from neutrinos Jets from QCD radiation #### We use γ +jets to estimate $Z \rightarrow vv$ - Differences at theory level: couplings, boson mass - Have around 2x more γ +jets events than $Z \rightarrow vv$ after reco cuts ## We transform the observed γ +jets yield into a prediction for $Z \rightarrow vv$ - Bin γ +jets in 3D: (H_T, N_J, N_B) - Take from data: - γ +jets region yield and purity (isolation template fit) - Use MC to predict: - Fraction of fragmentation photons - Ratio of $Z \rightarrow vv$ to γ +jets events, $R(Z/\gamma)$ - Shape of $Z \rightarrow vv$ in M_{T2} - $R(Z/\gamma)$ and the M_{T2} shape are validated using data (next slide) - Dominant uncertainties come from: - γ +jets control region statistics (1-100%) - Validation of R(Z/ γ) using Z → ℓℓ events (15-100%) - M_{T2} shape (up to 40%) ## We validate the MC modeling of $R(Z/\gamma)$ and the M_{T2} shape using data - $R(Z/\gamma)$: compare $R(Z_{\ell\ell}/\gamma)$ from MC with $R(Z_{\ell\ell}/\gamma)$ in data - Overall offset corrected for, no significant shape trends - Use statistical uncertainty on $R(Z_{\ell\ell}/\gamma)$ from data, 1D in H_T , N_J , N_B - M_{T2} shape: compare $Z \rightarrow vv$ MC with γ +jets and $W \rightarrow \ell v$ estimates - Uncertainty from MC variations covers the observed data - Also perform estimate binning CR in (H_T, N_J, N_B, M_{T2}) , statistically consistent with nominal #### $W \rightarrow \ell v$: Events with a found lepton are used to estimate those with a lost one - Reduce with aggressive veto on isolated leptons and tracks: - Veto e, μ with $p_T > 10$ GeV, or with $p_T > 5$ GeV & $M_T(\ell, E_T^{miss}) < 100$ GeV - Veto tracks with $p_T > 10$ GeV, $M_T(\ell, E_T^{miss}) < 100$ GeV - Targeting hadronic τ decays - 85% are 1-prong - We invert the veto on e and μ to obtain data control regions - Require $M_T(\ell, E_{T^{miss}}) < 100$ GeV to reduce signal contamination in models with leptons - Have 1-2x as many events in control as signal region ### We transform the observed 1ℓ events into a prediction for lost leptons - Bin 1ℓ events in 3D: (H_T, N_J, N_B) - Take from data: - 1ℓ region yield - Lepton efficiency (applied as correction to MC) - Use MC to predict: - Lepton acceptance, $W \rightarrow \tau v \rightarrow hadron+X$ events - Shape of W+jets and ttbar in M_{T2} - The M_{T2} shape is validated using data (next slide) - Dominant uncertainties come from: - 1ℓ control region statistics (1-100%) - M_{T2} shape (up to 40%) ## We validate the MC modeling of the M_{T2} shape using 1ℓ data - Compare W+jets and ttbar MC with 1ℓ data - Observe good agreement, integrating over H_T, N_J - Also perform estimate binning 1ℓ CR in (H_T , N_J , N_B , M_{T2}), consistent with nominal within statistical error #### QCD multijets: predict using events with an obviously mismeasured jet • Use low $\Delta \phi_{min} = min(\Delta \phi(E_{T}^{miss}, j_{1,2,3,4}))$ as a control region ## We transform the observed low $\Delta \phi_{min}$ events into a prediction for multijets - Bin low $\Delta \phi_{min}$ events in 2D: (H_T, M_{T2}) - All main ingredients come from data: - $\mathbf{r}_{\phi}(\mathbf{H}_{\mathsf{T}}, \mathbf{M}_{\mathsf{T2}})$: ratio of events with $(\Delta \phi_{\mathsf{min}} > 0.3) / (\Delta \phi_{\mathsf{min}} < 0.3)$ - from fit to data in multijet-enriched sideband, $M_{T2} < 100 \text{ GeV}$ - $f_i(H_T)$: fraction of events in a given N_J bin - computed in data: $\Delta\phi_{min}$ < 0.3 and M_{T2} 100-200 - $r_b(N_J)$: fraction of events in a given N_B bin - computed in data: $\Delta\phi_{min}$ < 0.3 and M_{T2} 100-200, integrated over H_T - Full method validated in MC - Dominant uncertainties come from: - Low $\Delta \phi_{min}$ region statistics (5-100%) - Statistical error for r_{ϕ} fit in M_{T2} tail (50-100%) - Systematic error for r_{ϕ} fit, from variations in MC (16-200%) ### Results: collapsing the M_{T2} dimension ### Results: monojet events ### Results: M_{T2} dimension for an H_{T} bin ### A signal would appear as a correlated excess across similar bins No evidence for such a signal ## We use Simplified Models to interpret our results ## Signal kinematics vary with the splitting between sparticle masses **Small \Delta m region:** low p_T or off-shell decay products, rely more on ISR boost **Large \Delta m region:** bulk of phase space, high p_{τ} decay products # Our 13 TeV results extend the 8 TeV gluino limits by up to 300 GeV ### Our 13 TeV results extend the 8 TeV gluino limits by up to 200 GeV **CMS** Preliminary 2.2 fb⁻¹ (13 TeV) 1800 pp $\rightarrow \tilde{g} \ \tilde{g}, \ \tilde{g} \rightarrow t \ \bar{t} \ \tilde{\chi}^0_1$ NLO+NLL exclusion Expected \pm 1 $\sigma_{\text{experiment}}$ \blacksquare Observed \pm 1 σ_{theory} ### Searching for $E_T^{miss} + \ell^+\ell^- + jets$: on and off the Z resonance # SUSY can produce characteristic features in the m_{ee} spectrum ### CMS and ATLAS have seen excesses in different channels #### **CMS** #### **ATLAS** 2012: no excess, looser cuts ### Other Backgrounds 82 84 86 88 90 92 94 96 98 100 $2012:3\sigma$ 2015: 2.2σ #### off-Z 2012: 2.6σ, low m_{ee} 350 ATLAS • • (545,465,425,385) GeV 2012: no excess Eur. Phys. J. C75 (2015) 318 ATI AS-CONF-2015-082 ## We search for either a Z boson or an Edge-like feature - Select events with 2 opposite-sign same flavor (OSSF) leptons - $-p_T > 20$ GeV, collected using dilepton triggers - $-|\eta|$ < 2.4, exclude ECAL transition region 1.4 < $|\eta|$ < 1.6 - Require at least 2 jets and E_Tmiss > 100 GeV - Main backgrounds: - "Flavor symmetric": events with 2 W bosons, like ttbar - Use flavor symmetry to predict from eµ events - Important for full mass range - Z+jets: E_Tmiss from jet mismeasurement - Use γ +jets events to predict instrumental E_T^{miss} - Important for search on the Z resonance, small otherwise - Other SM: events with a Z boson and genuine E_Tmiss - · WZ, ZZ, ttZ etc. Small contribution, estimated from simulation - Validate WZ and ZZ modeling in 3 ℓ and 4 ℓ regions # Z boson search: we classify events based on H_T , N_J , N_B , and E_T^{miss} Binning in N_B: 0, ≥1 Additional "ATLAS-like" signal region to check the ATLAS 8 TeV excess: $$H_{T} + p_{T}(\ell_{1}) + p_{T}(\ell_{2}) > 600 \text{ GeV}$$ $$E_{T}^{miss} > 225 \text{ GeV}, \Delta \phi (E_{T}^{miss}, j_{1.2}) > 0.4$$ Total of 17 regions (16 exclusive) # Edge search: classify events based on E_{T}^{miss} , N_{J} , N_{B} , $m_{\ell\ell}$, and lepton $|\eta|$ Binning in N_B : 0, ≥ 1 We also report $N_B \geq 0$ for comparison to 8 TeV results Finally, separate events by **lepton centrality**: Central: both leptons $|\eta| < 1.4$, Forward: at least one lepton $|\eta| > 1.6$ Total of 30 regions (20 exclusive) # E_{T}^{miss} from jet mismeasurement in Z+jets is modeled using γ +jets - γ+jets events are collected with prescaled triggers - p_T thresholds as low as 22 GeV - We reweigh $p_T(\gamma)$ to $p_T(Z)$ to match kinematics - Prediction is normalized to data in the Z+jets dominated region - $E_T^{miss} < 50 \text{ GeV}$ - Done separately for SR A and B, N_B = 0 and ≥ 1, ATLAS SR # The Z+jets uncertainties are dominated by statistics at high $E_{\scriptscriptstyle T}^{\rm miss}$ - Uncertainties from: - γ +jets data statistics at high E_Tmiss: 10-50% - closure test of the method in MC: 4-50%, mostly statistics - normalization in low E_T^{miss} data, statistical: 3-10% - Prediction for other $m_{\ell\ell}$ ranges: - Take $m_{\ell\ell}$ shape from MC - Validated in data - Uncertainty from variation with $N_{\rm J}$ and $E_{\rm T}^{\rm miss}$, up to 25% ## Flavor symmetry is quantified with two statistically independent methods - $\mathbf{R}_{\mathsf{SFOF}}$: transfer factor between OF (eµ) and SF (ee+µµ) - 1) Measure R_{SFOF} directly in ttbar-dominated control region - E_T^{miss} 100-150, N_J = 2, $m_{\ell\ell}$ outside 81-101 GeV - Use statistical uncertainty from data - 2) Compute R_{SFOF} from reconstruction and trigger efficiencies in data - \mathbf{r}_{ue} : ratio of μ /e selection efficiencies. - Measured in Drell-Yan dominated region, E_T^{miss} < 50 GeV - \mathbf{R}_{T} : ratio of dilepton trigger efficiencies - Measured using orthogonal H_T triggers - Uncertainty from statistics, dependence on kinematic variables - Measurements consistent, combine using weighted average: - $R_{SFOF} = 1.04 \pm 0.05$ for central category - R_{SFOF} = 1.10 ± 0.07 for forward category # Results on the Z resonance: no evidence for new physics ## Results for the Edge search: also no significant deviations Excess from 8 TeV CMS search does not appear again # The Z region results are interpreted to constrain gluino production ### Looking ahead: Targeting electroweak sparticles ## Electroweak production has a lower cross section, needs more luminosity With O(10) fb⁻¹ at 13 TeV, will surpass 8 TeV results # Dibosons and E_{T}^{miss} are a typical signature; cover many final states • Helped coordinate effort for 8 TeV, working on this for 13 TeV #### **Working on searches for:** - 1ℓ 2b: W($\ell\nu$)h(bb) - OS 2\(\ell2\)j: W(jj)Z(\(\ell \ell \ell) #### Also: • OS 2ℓ2b: h(bb)Z(ℓℓ) EPJC 74 (2014) 3036 PRD 90, 092007 (2014) ## The HL-LHC will greatly extend sensitivity to electoweak production ### These are exciting times for searches - Already exceeded Run 1 sensitivity with 1/10th of the luminosity - No evidence yet for new physics, but 40x more data coming in Run 2 - The M_{T2} inclusive analysis constrains a large range of SUSY (and dark matter) models - Tension remains between ATLAS and CMS in Z+jets+E_Tmiss - 2016 should be very interesting - The CMS Edge search doesn't confirm the 8 TeV excess - Electroweak SUSY searches will break new ground again in 2016 - CMS event @ LPC April 27-29: Electroweak and Compressed SUSY ### Bonus Slides: Intro # The CMS detector measures collision decay products precisely to infer $E_{\scriptscriptstyle T}^{\rm miss}$ ### We use 2.3 fb⁻¹ of data from 2015 CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV ### Bonus Slides: M_{T2} Analysis ### M_{T2} Object Selections #### Jets: - Anti-k_t 0.4 PF jets - $p_T > 30 \text{ GeV}, |\eta| < 4.7$ - $|\eta|$ <2.5 for N_J, N_B, H_T, M_{T2} - Jet Cleaning for noise - For 1-jet region: tighter noise cleaning #### **b-tagged jets:** - $p_T > 20 \text{ GeV}, |\eta| < 2.5$ - Medium WP of CSVv2IVF algo #### **MET**: - Particle flow, JECs applied - Cleaning requirements for detector effects and non-collision backgrounds #### **Leptons:** $p_T > 10$ **GeV**, $|\eta| < 2.4$ - Electrons: - "Veto" ID, minilso/ p_T < 0.1 - Muons: - "Loose" ID, minilso/ p_T < 0.2 - $|d_0| < 0.2$ cm, |dz| < 0.5 cm #### **Additional leptons for veto:** - PF Leptons (e, μ): m_T <100 GeV - p_T >5 GeV, |dz|<0.1 cm, RelTrklso<0.2 - PF Charged Hadrons: $m_T < 100 \text{ GeV}$ - p_T>10 GeV, |dz|<0.1 cm, RelTrklso<0.1 #### <u>Photons:</u> $p_T > 180 \text{ GeV}, |\eta| < 2.5$ - "Loose" ID - PF Charged Iso < 2.5 GeV ### M_{T2} vs E_{T}^{miss} for signal, QCD multijets $$M_{T2} = 2 p_T^{vis(1)} p_T^{vis(2)} (1 + \cos(\Delta \phi_{1,2}))$$ (assuming massless invisible particles, massless hemispheres) Signal: $M_{T2} \sim E_T^{miss}$ Multijets: $M_{T2} \ll E_{T}^{miss}$ ### $Z \rightarrow vv$ prediction: details • Bin γ +jets in 3D (H_T, N_J, N_B) and use MC to predict M_{T2} shape $$N_{Z \to \nu \overline{\nu}}^{\text{SR}}\left(M_{T2}\right) = N_{\gamma}^{\text{CR}}\left(H_{T}, N_{j}, N_{b}\right) \times P_{\gamma} \times f \times R_{\text{MC}}^{Z/\gamma}\left(H_{T}, N_{j}, N_{b}\right) \times k_{\text{MC}}\left(M_{T2}\right)$$ - N_γcR: observed γ+jets yield in control region - Photon treated as invisible - P_{γ} : photon purity (accounts for π^0 and fakes) - ~0.95, data driven: isolation template fit - also have fake rate method as cross check - f: fraction of direct prompt photons - Account for fragmentation using QCD multijet MC - ~0.92, MC based - **R(Z/γ)**: ~0.4-0.5, MC based - − Validated using $Z \rightarrow II$: $R(Z_{\parallel}/\gamma)^{data}$ vs $R(Z_{\parallel}/\gamma)^{MC}$ - \mathbf{k}_{MC} : fraction of events in each M_{T2} bin - Taken from $Z \rightarrow vv$ MC in each (H_T, N_J, N_B) region - M_{T2} shape from invisible Z is validated in data (γ +jets and W \rightarrow lv) - $-M_{T2}$ shape uncertainty is based on full set of MC variations - For monojet, CR binning is same as SR, no MC shape used ### Photon purity measurement ### Full uncertainties for $Z \rightarrow vv$ prediction #### Photon control region: - Statistics in data: 1-100% - Photon purity (stat): 1-100%, typically 5-10% - Photon purity (syst): 5% (from template variations, MC non-closure) - Fragmentation (syst): 8% (to cover for differences in MC) #### • <u>R(Z/γ):</u> - MC statistics - Double ratio offset: 11% (from 0.95 ± 0.11 offset, MC vs data) - $R(Z_{\parallel}/\gamma)$ uncertainty: 15-100% - Stat uncertainty on $R(Z_{\parallel}/\gamma)$ in data, 1D projections along H_T , N_J , N_B - \underline{M}_{T2} shape (multijet regions with > 1 M_{T2} bin): - Full set of MC variations (theory + reco) - 40% in last bin - Linear morphing along M_{T2} ### Lost lepton prediction: details • Bin 1 ℓ events in 3D (H_T, N_J, N_B) and use MC to predict M_{T2} shape $$N_{1\ell}^{\mathrm{SR}}\left(M_{T2}\right) = N_{1\ell}^{\mathrm{CR}}\left(H_{T}, N_{\mathsf{j}}, N_{\mathsf{b}}\right) \times R_{\mathrm{MC}}^{O\ell/1\ell}\left(H_{T}, N_{\mathsf{j}}, N_{\mathsf{b}}\right) \times k_{\mathrm{MC}}\left(M_{T2}\right)$$ - N_{11}^{CR} : observed 1ℓ yield in control region - Use signal triggers, require exactly 1 lepton - To avoid signal contamination (in signals with leptons): - MT(*t*, E_T^{miss}) < 100 GeV - For ≥7j, extrapolate from 1-2b to ≥2b - **R(0I/1I)**_{MC}: ~O(1), MC based - Accounts for lepton acceptance & efficiency, corrected for data T&P results - Accounts for hadronic tau decays - Uncertainty from T&P, MC variations - \mathbf{k}_{MC} : fraction of events in each M_{T2} bin - Taken from MC in each (H_T, N_J, N_B) region - M_{T2} shape from ttbar+W MC (including rares) is validated in 1 lepton data - M_{T2} shape uncertainty based on full set of MC variations - For monojet, CR binning is same as SR, no MC shape used # Full uncertainties for lost lepton prediction #### 1l control region: Statistics in data: 1-100% #### • R(01/11): - MC statistics - Lepton efficiency: 7% - MC variations (theory + reco): 10-40% - Theory (renormalization/factorization scales, PDF): < 5% - JES variation: up to 40% at very low HT and ≥7j - B-tag SF: 15% for ≥3b, < 5% elsewhere - \underline{M}_{T2} shape (multijet regions with > 1 M_{T2} bin) - Full set of MC variations (theory + reco) - 40% in last bin - Linear morphing along M_{T2} # The transfer factors for the multijet estimate are extracted from data - $r_{\phi}(H_T, M_{T2})$: fit to power law as function of M_{T2} in H_T bins - Stat uncertainty from fit, syst uncertainty from varying fit range - $f_i(H_T)$: computed for each H_T bin - Uncertainty covers variation in MC with $\Delta \phi_{min}$, M_{T2} - $r_b(N_J)$: computed for each N_J bin, integrated over H_T - Uncertainty covers variation in MC with $\Delta \phi_{min}$, M_{T2} , H_{T} # The multijet estimate for the monojet bins uses unbalanced dijet events - Contribution to monojet regions small, 8% at most - Use events with 2nd jet p_T 30-60 GeV to predict 0-30 - Subtract other backgrounds taking 50% uncertainty #### Full uncertainties for multijet prediction #### • Multijet regions: using $\Delta \phi_{min}$ sideband - Control region stats: 5-100% - r_{ϕ} fit (stat): 50-100%, depending on H_T and M_{T2} - r_{ϕ} fit (syst): 16-200%, depending on H_T and M_{T2} - f_i (syst): 7-25%, covering invariance assumptions in MC - r_b (syst): 8-70%, covering invariance assumptions in MC #### Monojet regions: using back-to-back dijet sideband - Control region statistics: 5-100% - Electroweak subtraction: 50% #### QCD multijet cross check: Rebalance and Smear method - Select data multijet events - Rebalance the jet momenta to give E_Tmiss ~0 taking JER into account - Smear jet momenta in each rebalanced event many times according to JER - JER from MC, separately for b and light flavor - Additional JER broadening for data from measurements - Use smeared events to estimate QCD multijet background - Not done for H_T 200-450, no prescaled trigger - Checked closure in QCD multijet MC - Found under-prediction of 20-25% - Correct prediction up, use full size of correction as uncertainty - Checked closure in data sidebands (low $\Delta \phi_{min}$ and/or low M_{T2}) - Found over-prediction of ~35% → Take as additional systematic # Rebalance and Smear gives results consistent with nominal prediction - Validation of standard multijet estimate with R&S prediction in signal regions, integrated over M_{T2} - Two independent methods agree within uncertainties - Although there may be a systematic shift, less than 1σ ### Systematic uncertainties for signals | Source | Typical Values | |------------------------------------------|----------------| | Luminosity | 4.6% | | MC statistics | 1–100% | | Renormalization and factorization scales | 5% | | Parton distribution functions | 10% | | "ISR" recoil | 0–30% | | B-tagging efficiency, heavy flavor | 0–40% | | B-tagging efficiency, light flavor | 0–20% | | Lepton efficiency | 0–20% | | Jet energy scale | 5% | # Bonus Slides: M_{T2} Results # M_{T2} results: M_{T2} collapsed, pre-fit # M_{T2} results: M_{T2} collapsed, post-fit # M_{T2} results: monojet, pre-fit ### M_{T2} results: H_{T} 200-450, pre-fit ## M_{T2} results: H_{T} 450-575, pre-fit # M_{T2} results: H_{T} 575-1000, pre-fit # M_{T2} results: H_{T} 1000-1500, pre-fit ### M_{T2} results: $H_{T} > 1500$, pre-fit # Our 13 TeV results extend the 8 TeV limits by up to 300 GeV ### Bonus Slides: OS analysis #### On-Z selection, comparison to ATLAS - Highlight only cuts that are different - ATLAS overlap removal cuts use 10 GeV leptons, 20 GeV jets | <u>Cut</u> | <u>CMS</u> | ATLAS | |-----------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------| | Triggers | Dilepton, iso OR noniso | Single or dilepton | | Lepton p _T | 20, 20 | 50, 25 | | Lepton η | $ \eta $ < 2.4, remove 1.4-1.6 | $ \eta $ < 2.47 for e, $ \eta $ < 2.4 for μ | | Lepton dR | > 0.1 | $>$ 0.01 for e wrt μ , no cut for SF | | Jet p _⊤ | 35 GeV | 30 GeV | | Jet η | $ \eta < 2.4$ | $ \eta < 2.5$ | | dR(jet, lep) | > 0.4 | > 0.2 for non-btagged jets wrt leptons | | dR(lep, jet) | - | > 0.2 for muons wrt b-tagged jets
> 0.04 + 10 GeV/ p_{T} for muons wrt jets
> 0.4 for electrons wrt jets | #### Flavor Symmetry Method Details $$r_{\mu e} = \sqrt{N_{\mu \mu}/N_{ee}}$$ Measured in DY-dominated region with ETmiss < 50 GeV Uncertainty of 10-20% from variations with lepton kinematics and event kinematics Contributes 1-4% uncertainty to $R_{\rm SFOF}$ $$R_T = \frac{\sqrt{\epsilon_{\mu\mu} \epsilon_{ee}}}{\epsilon_{\mu e}}$$ Measured with orthogonal H_{τ} triggers Uncertainty of 7-9% from statistics, covers variation with kinematic variables $$R_{SFOF} = \frac{1}{2} (r_{\mu e} + r_{\mu e}^{-1}) R_T$$ | | Central | | Forward | | |--|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | | Data | MC | Data | MC | | $\frac{1}{2} (r_{\mu/e} + r_{\mu/e}^{-1})$ | 1.008 ± 0.013 | 1.008 ± 0.012 | 1.022 ± 0.042 | 1.026 ± 0.046 | | R_T | 1.003 ± 0.072 | 1.027 ± 0.067 | 1.061 ± 0.090 | 1.029 ± 0.071 | | | $R_{SF/OF}$ | | | | | from factorization | 1.011 ± 0.074 | 1.035 ± 0.068 | 1.084 ± 0.103 | 1.057 ± 0.087 | | direct measurement | 1.055 ± 0.061 | 1.050 ± 0.013 | 1.107 ± 0.134 | 1.079 ± 0.021 | | weighted average | $\textbf{1.037} \pm \textbf{0.047}$ | $\textbf{1.049} \pm \textbf{0.013}$ | $\textbf{1.097} \pm \textbf{0.068}$ | $\textbf{1.079} \pm \textbf{0.020}$ | ### On-Z results comparison with ATLAS | <u>Process</u> | CMS, 2.2/fb | CMS, scaled to 3.2/fb | ATLAS, 3.2/fb | |------------------|----------------|-----------------------|---------------| | Z+jets | 3.7 ± 0.7 | 5.4 ± 1.0 | 1.9 ± 0.8 | | Flavor symmetric | 6.3 +3.8 -2.5 | 9.2 +5.5 -3.6 | 5.1 ± 2.0 | | WZ/ZZ + Rare | 2.0 ± 0.9 | 2.9 ± 1.3 | 3.3 ± 0.8 | | Total prediction | 12.0 +4.0 -2.8 | 17.5 +5.8 -4.0 | 10.3 ± 2.3 | | Data | 12 | - | 21 | #### Bonus Slides: Electroweak # 1ℓ +bb search gives the best sensitivity for the Wh+MET topology at large Δm - Exactly 1ℓ (e,µ) and 2 b-jets - $p_T(e/\mu) > 30/25 \text{ GeV}$ - $p_T(jet) > 50/30 \text{ GeV}$ - Look for resonance in M(bb) - Main backgrounds: ttbar, W+jets, WZ - Suppress using kinematic variables to exploit extra MET in signal - M_T, M_{T2}bl, also MET - Model mainly using MC with corrections from data control regions # Observe good modeling of M(bb), no excess in signal regions #### Selection for HL-LHC projection - Lepton: $p_T > 40 \text{ GeV}$, $|\eta| < 2.4$ - Veto additional leptons with $p_T > 10 \text{ GeV}$ - Jets: $p_T > 30$, $|\eta| < 2.4$ - Require exactly 2 jets to suppress ttbar $\rightarrow 1\ell$ - Cut on kinematic variable M_{CT}(b₁,b₂): has endpoint for ttbar but not for signal - Require M(bb) consistent with Higgs mass | Cut | Signal Requirement | | |----------------------------------|-------------------------|--| | N(leptons) | = 1 | | | N(jets) | = 2 | | | N(b-tags) | = 2 | | | $M_{bar{b}}$ | ∈[90,150] GeV | | | M_T | > 100 GeV | | | M_{CT} | > 160 GeV | | | $E_{\mathrm{T}}^{\mathrm{miss}}$ | > 200,300,400(,500) GeV | | #### Sensitivity comes in the tail of MET