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Overview

● The Standard Model, Dark Matter, and Supersymmetry

● The Large Hadron Collider, the CMS detector and trigger

● Searching for ET
miss + jets: the MT2 analysis

● Searching for ET
miss + ℓ+ℓ- + jets: on and off the Z resonance

● Coming next: searches for electroweak Supersymmetry
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The Standard Model of physics works 
wonderfully, and is incomplete

● Unexplained observations:
— How does dark matter 

interact with known particles?

● Some theoretical issues:
— Why is the Higgs boson mass 

stable at 125 GeV?
— Do the strong, weak, and 

electromagnetic forces unite 
at some high scale?
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Dark Matter is more abundant than 
known matter, but remains mysterious
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http://articles.adsabs.harvard.edu//full/1991MNRAS.249..523B/0000523.000.html
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Supersymmetry (SUSY) can explain 
Dark Matter and solve other problems
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Supersymmetry (SUSY) can explain 
Dark Matter and solve other problems

● The lightest SUSY particle (LSP) is a dark matter candidate 
if stable due to R-parity

~χ1
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0 ,~χ3
0 ,~χ4

0 ~χ1
± ,~χ2

±



7

Supersymmetry (SUSY) can explain 
Dark Matter and solve other problems

● The top squark can stabilize Higgs mass by canceling loop 
effects from the Standard Model top quark
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Dark Matter particles could be 
produced in proton-proton collisions
● The SUSY LSP is part of a broader class of Weakly Interacting 

Massive Particles (WIMPs) that could appear





Anti-social
With minimal additional particles

Or social
With many additional particles
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The Large Hadron Collider (LHC) is 
our instrument at the energy frontier

2015: pp center of mass energy increased from 8 to 13 TeV
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Strong production has the highest 
SUSY cross section
● Highest mass limits from LHC Run 1
● Benefits the most from 8→13 TeV energy increase

pp→~g ~g ,1400GeV

pp→~t ~t ,800GeV
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Missing Transverse Momentum (E
T

miss) 
is the signature of Dark Matter 
● WIMPs do not interact and escape the detector
● We infer their presence through an imbalance in the event
● Strong production or initial state radiation → hadronic jets
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E
T

miss

Plane transverse to beam
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The CMS detector measures collision 
decay products precisely to infer E

T
miss
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The CMS trigger quickly rejects the 
uninteresting 99.998% of events

● Collision events not selected are lost forever
● Developed several of the trigger paths used in these analyses: 

— Tracker-based reconstruction for single muons
• Complementary to existing outside-in reconstruction
• Improved efficiency especially at lower pT

— Tracker-based isolation for muons
• Improved speed and efficiency

— Single photons, HT (scalar sum of jet pT), HT+ET
miss

High Level 
Trigger (HLT)

Level 1 (L1)
Trigger

Reconstruction,
Storage

40 MHz 100 kHz 1 kHz

Hardware / 
Firmware

Software
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The triggers we use are highly efficient 

Tracker muon reconstruction 
(IsoTkMu20) complements 

standard outside-in reco

H
T
+E

T
miss path

used for M
T2

 analysis
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Searching for E
T

miss + jets:
the M

T2
 analysis

CMS-PAS-SUS-15-003

q

q
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E
T

miss

https://cds.cern.ch/record/2114816
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The M
T2

 analysis searches for 
E

T
miss + jets as inclusively as possible

● Our baseline selection is as loose as possible given our triggers 
and targeted reduction of instrumental backgrounds

● We categorize events using four variables: HT, NJ, NB, MT2

● Main backgrounds:
— Z→+jets: ET

miss from 
• most SUSY-like background, estimated primarily using +jets

— “Lost lepton”: W→ℓ in W+jets and ttbar: ET
miss from 

• reduce by vetoing on charged lepton, estimate with found lepton 
sample

— QCD multijets: ET
miss from jet mismeasurement

• reduce with MT2 and other cuts, estimate from mismeasured jet sample

● We perform a simultaneous likelihood fit over all signal bins to 
place constraints on new physics models
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We categorize events for sensitivity to 
a broad range of signatures
● Unknown mass scale and mass splittings

— HT: scalar sum of jet pT → visible energy scale
• Bins from 200 to > 1500 GeV

— MT2: missing energy scale
• Bins from 200 to > 1000 GeV

● Unknown parton multiplicity
— NJ: number of jets with pT > 30 GeV, || < 2.5

• Bins from 1 to ≥7

● Unknown flavor content
— NB: number of b-tagged jets, pT > 20 GeV, || < 2.5

• Bins from 0 to ≥3
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The “stransverse mass” M
T2

 strongly 
suppresses jet mismeasurement

● MT2 is a generalization of MT for 
decay chains with two 
unobserved particles

— Typical in SUSY events
● As visible objects, use jets 

clustered into 2 hemispheres
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The “stransverse mass” M
T2

 strongly 
suppresses jet mismeasurement

● MT2 is a generalization of MT for 
decay chains with two 
unobserved particles

— Typical in SUSY events
● As visible objects, use jets 

clustered into 2 hemispheres

● SUSY signals:
— Symmetric hemispheres 
— Small-ish angle
— MT2 ~ ET

miss

● QCD multijet events:
— Hemispheres back-to-back
— Or asymmetric
— MT2 << ET

miss

M T 2≃2 pT
vis (1 ) pT

vis(2) (1+cos (Δ ϕ1,2))
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Our baseline selection is dictated by 
triggers plus multijet suppression

Trigger Coverage
(Offline Thresholds)
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Our baseline selection is dictated by 
triggers plus multijet suppression

● Reject multijets:
— min > 0.3

• min = min( (ET
miss, j1,2,3,4) )

Trigger Coverage
(Offline Thresholds)

Mismeasured jet

Jet
Jet

E
T

miss
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Our baseline selection is dictated by 
triggers plus multijet suppression

● Reject multijets:
— min > 0.3

• min = min( (ET
miss, j1,2,3,4) )

—

Trigger Coverage
(Offline Thresholds)

|⃗H T
miss

− E⃗T
miss|

ET
miss <0.5
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Our baseline selection is dictated by 
triggers plus multijet suppression

● Reject multijets:
— min > 0.3

• min = min( (ET
miss, j1,2,3,4) )

—

● Reject W→ℓ:
— Charged lepton/track veto

Trigger Coverage
(Offline Thresholds)

|⃗H T
miss

− E⃗T
miss|

ET
miss <0.5
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We categorize events based on N
J
, N

B

Jet Multiplicity Regions
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Then using H
T
 and M

T2
 for multijet

Multijet Regions

* Combine bins in M
T2

 / jet p
T
 to have at least 

1 expected background event for each (H
T
,N

J
,N

B
) region

Jet Multiplicity Regions
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Or the jet p
T
 for monojet events

Monojet Regions

Multijet Regions

Jet Multiplicity Regions

* Combine bins in M
T2

 / jet p
T
 to have at least 

1 expected background event for each (H
T
,N

J
,N

B
) region
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We have in total 172 exclusive bins

Monojet Regions

Multijet Regions

Jet Multiplicity Regions

* Combine bins in M
T2

 / jet p
T
 to have at least 

1 expected background event for each (H
T
,N

J
,N

B
) region
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Z→: the closest impostor to Dark 
Matter in the Standard Model
● Can be suppressed only with kinematic/multiplicity variables:

— HT, NJ, NB, MT2

E
T

miss from neutrinos

Jets from QCD radiation
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We use +jets to estimate Z→
● Differences at theory level: couplings, boson mass
● Have around 2x more +jets events than Z→ after reco cuts
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We transform the observed +jets 
yield into a prediction for Z→
● Bin +jets in 3D: (HT, NJ, NB) 
● Take from data:

— +jets region yield and purity (isolation template fit)
● Use MC to predict:

— Fraction of fragmentation photons
— Ratio of Z→ to +jets events, R(Z/) 
— Shape of Z→ in MT2

● R(Z/) and the MT2 shape are validated using data (next slide)

● Dominant uncertainties come from:
— +jets control region statistics (1-100%)
— Validation of R(Z/) using Z→ℓℓ events (15-100%)
— MT2 shape (up to 40%)
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We validate the MC modeling of R(Z/) 
and the M

T2
 shape using data

● R(Z/): compare R(Zℓℓ/) from MC with R(Zℓℓ/) in data
— Overall offset corrected for, no significant shape trends
— Use statistical uncertainty on R(Zℓℓ/) from data, 1D in HT, NJ, NB

● MT2 shape: compare Z→ MC with +jets and W→ℓ estimates
— Uncertainty from MC variations covers the observed data
— Also perform estimate binning CR in (HT, NJ, NB, MT2), statistically consistent with nominal



32

W→ℓ: Events with a found lepton are 
used to estimate those with a lost one

● Reduce with aggressive veto on 
isolated leptons and tracks:

— Veto e,  with pT > 10 GeV, or with
pT > 5 GeV & MT(ℓ,ET

miss) < 100 GeV
— Veto tracks with pT > 10 GeV, 

MT(ℓ,ET
miss) < 100 GeV 

• Targeting hadronic  decays
• 85% are 1-prong

● We invert the veto on e and  to 
obtain data control regions

— Require MT(ℓ,ET
miss) < 100 GeV to 

reduce signal contamination in 
models with leptons

● Have 1-2x as many events in control 
as signal region
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We transform the observed 1ℓ events 
into a prediction for lost leptons
● Bin 1ℓ events in 3D: (HT, NJ, NB) 
● Take from data:

— 1ℓ region yield
— Lepton efficiency (applied as correction to MC)

● Use MC to predict:
— Lepton acceptance, W→→hadron+X events
— Shape of W+jets and ttbar in MT2

● The MT2 shape is validated using data (next slide)

● Dominant uncertainties come from:
— 1ℓ control region statistics (1-100%)
— MT2 shape (up to 40%)
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We validate the MC modeling of the 
M

T2
 shape using 1ℓ data

● Compare W+jets and ttbar MC with 1ℓ data
— Observe good agreement, integrating over HT, NJ

— Also perform estimate binning 1ℓ CR in (HT, NJ, NB, MT2), 
consistent with nominal within statistical error



35

QCD multijets: predict using events 
with an obviously mismeasured jet
● Use low min = min( (ET

miss, j1,2,3,4) ) as a control region

Mismeasured jet

Jet
Jet

E
T

miss
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We transform the observed low 
min

 
events into a prediction for multijets

● Bin low min events in 2D: (HT, MT2) 
● All main ingredients come from data:

— r(HT, MT2): ratio of events with (min > 0.3) / (min < 0.3)
• from fit to data in multijet-enriched sideband, MT2 < 100 GeV

— fj(HT): fraction of events in a given NJ bin
• computed in data: min < 0.3 and MT2 100-200

— rb(NJ): fraction of events in a given NB bin
• computed in data: min < 0.3 and MT2 100-200, integrated over HT

● Full method validated in MC

● Dominant uncertainties come from:
— Low min region statistics (5-100%)
— Statistical error for r fit in MT2 tail (50-100%)
— Systematic error for r fit, from variations in MC (16-200%)
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Results: collapsing the M
T2

 dimension

No significant deviations observed
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Results: monojet events

No significant deviations observed

Jet 1 p
T
 [GeV]
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Results: M
T2

 dimension for an H
T
 bin

No significant deviations observed

M
T2

 [GeV]



40

A signal would appear as a correlated 
excess across similar bins

No evidence for such a signal

M
T2

 [GeV]
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We use Simplified Models to interpret 
our results

m~g

m
χ̃1

0

Δm=0

Δm≡m~g−m~χ1
0
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Signal kinematics vary with the 
splitting between sparticle masses

m~g

m
χ̃1

0

Δm=0

Δm≡m~g−m~χ1
0

Small Δm region: low p
T
 or off-shell 

decay products, rely more on ISR boost

Large Δm region: bulk of phase space, 
high p

T
 decay products
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Our 13 TeV results extend the 8 TeV 
gluino limits by up to 300 GeV

JHEP 05 (2015) 078

http://link.springer.com/article/10.1007/JHEP05%282015%29078
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Our 13 TeV results extend the 8 TeV 
gluino limits by up to 200 GeV

JHEP 05 (2015) 078

http://link.springer.com/article/10.1007/JHEP05%282015%29078
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Searching for E
T

miss + ℓ+ℓ- + jets:
on and off the Z resonance

CMS-PAS-SUS-15-011

m
Z m

ℓℓ

https://cds.cern.ch/record/2114811
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SUSY can produce characteristic 
features in the m

ℓℓ
 spectrum

m
Z m

ℓℓ

Z peak

Edge
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CMS and ATLAS have seen excesses 
in different channels

JHEP 04 (2015) 124 Eur. Phys. J. C75 (2015) 318
ATLAS-CONF-2015-082

CMS ATLAS

on-Z

off-Z

2012: 3 2015: 2.22012: no excess, looser cuts

2012: 2.6, low m
ℓℓ

2012: no excess

http://link.springer.com/article/10.1007%2FJHEP04%282015%29124
http://link.springer.com/article/10.1140/epjc/s10052-015-3518-2
https://cds.cern.ch/record/2114854
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We search for either a Z boson or an 
Edge-like feature

● Select events with 2 opposite-sign same flavor (OSSF) leptons
— pT > 20 GeV, collected using dilepton triggers
— || < 2.4, exclude ECAL transition region 1.4 < || < 1.6

● Require at least 2 jets and ET
miss > 100 GeV

● Main backgrounds:
— “Flavor symmetric”: events with 2 W bosons, like ttbar

• Use flavor symmetry to predict from e events
• Important for full mass range

— Z+jets: ET
miss from jet mismeasurement

• Use +jets events to predict instrumental ET
miss 

• Important for search on the Z resonance, small otherwise
— Other SM: events with a Z boson and genuine ET

miss

• WZ, ZZ, ttZ etc.  Small contribution, estimated from simulation
• Validate WZ and ZZ modeling in 3ℓ and 4ℓ regions
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SR B

SR A

Z boson search: we classify events 
based on H

T
, N

J
, N

B
, and E

T
miss

Binning in N
B
: 0, ≥1

Additional “ATLAS-like” signal region to check the ATLAS 8 TeV excess:
H

T
 + p

T
(ℓ

1
) + p

T
(ℓ

2
) > 600 GeV

E
T

miss > 225 GeV, (E
T

miss,j
1,2

) > 0.4

Total of 17 regions (16 exclusive)

Z+jets
Normalization Region

50 100 150 225 300 E
T

miss 
[GeV]

Signal Regions

N
J

N
J

H
T
 [GeV]

2 4

400
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Edge search: classify events based on 
E

T
miss, N

J
, N

B
, m

ℓℓ
, and lepton ||

Binning in N
B
: 0, ≥1

We also report N
B
 ≥0 for comparison to 8 TeV results

Finally, separate events by lepton centrality:
Central: both leptons || < 1.4, Forward: at least one lepton || > 1.6

Total of 30 regions (20 exclusive)

m
ℓℓ

 [GeV]20 70 81 101 120
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E
T

miss from jet mismeasurement in 

Z+jets is modeled using +jets
● +jets events are collected with prescaled triggers 

— pT thresholds as low as 22 GeV
● We reweigh pT() to pT(Z) to match kinematics
● Prediction is normalized to data in the Z+jets dominated region

— ET
miss < 50 GeV

● Done separately for SR A and B, NB = 0 and ≥ 1, ATLAS SR
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The Z+jets uncertainties are 
dominated by statistics at high E

T
miss

● Uncertainties from:
— +jets data statistics at high ET

miss: 10-50%
— closure test of the method in MC: 4-50%, mostly statistics
— normalization in low ET

miss data, statistical: 3-10%

● Prediction for other mℓℓ ranges:
— Take mℓℓ shape from MC

• Validated in data
— Uncertainty from variation with NJ 

and ET
miss, up to 25%
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Flavor symmetry is quantified with two 
statistically independent methods

● RSFOF: transfer factor between OF (e) and SF (ee+)

● 1) Measure RSFOF directly in ttbar-dominated control region
— ET

miss 100-150, NJ = 2, mℓℓ outside 81-101 GeV
— Use statistical uncertainty from data

● 2) Compute RSFOF from reconstruction and trigger efficiencies in data
— re: ratio of /e selection efficiencies. 

• Measured in Drell-Yan dominated region, ET
miss < 50 GeV

— RT: ratio of dilepton trigger efficiencies
• Measured using orthogonal HT triggers

— Uncertainty from statistics, dependence on kinematic variables

● Measurements consistent, combine using weighted average:
— RSFOF = 1.04 ± 0.05 for central category
— RSFOF = 1.10 ± 0.07 for forward category
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Results on the Z resonance: 
no evidence for new physics

ATLAS-like SR consistent with background



55

Results for the Edge search: 
also no significant deviations
● Excess from 8 TeV CMS search does not appear again

Central leptons
Inclusive in N

B
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The Z region results are interpreted to 
constrain gluino production

Limit extended by 100-200 GeV
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Looking ahead:
Targeting electroweak sparticles

W

H





E
T

miss
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Electroweak production has a lower 
cross section, needs more luminosity
● With O(10) fb-1 at 13 TeV, will surpass 8 TeV results
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EPJC 74 (2014) 3036
PRD 90, 092007 (2014)

W
Z

W
h

Z / h

WZWh

Working on searches for:
● 1ℓ2b: W(ℓ)h(bb)
● OS 2ℓ2j: W(jj)Z(ℓℓ)
Also:
● OS 2ℓ2b: h(bb)Z(ℓℓ)

Dibosons and E
T

miss are a typical 
signature; cover many final states
● Helped coordinate effort for 8 TeV, working on this for 13 TeV

http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-014-3036-7
http://dx.doi.org/10.1016/j.physletb.2015.03.017
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The HL-LHC will greatly extend 
sensitivity to electoweak production

CERN-LHCC-2015-010
* Not including all the channels 
used in 8 TeV analyses

https://cds.cern.ch/record/2020886
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These are exciting times for searches

● Already exceeded Run 1 sensitivity with 1/10th of the luminosity
— No evidence yet for new physics, but 40x more data coming in Run 2

● The MT2 inclusive analysis constrains a large range of SUSY (and 
dark matter) models

● Tension remains between ATLAS and CMS in Z+jets+ET
miss

— 2016 should be very interesting

● The CMS Edge search doesn't confirm the 8 TeV excess

● Electroweak SUSY searches will break new ground again in 2016
— CMS event @ LPC April 27-29: Electroweak and Compressed SUSY
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Bonus Slides: Intro
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The CMS detector measures collision 
decay products precisely to infer E

T
miss
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We use 2.3 fb-1 of data from 2015
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Bonus Slides: M
T2

 Analysis
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M
T2

 Object Selections

Jets:
● Anti-kt 0.4 PF jets
● pT > 30 GeV, |η|<4.7
● |η|<2.5 for NJ, NB, HT, MT2

● Jet Cleaning for noise
● For 1-jet region: tighter noise cleaning

b-tagged jets:
● pT > 20 GeV, |η|<2.5
● Medium WP of CSVv2IVF algo

MET:
● Particle flow, JECs applied 
● Cleaning requirements for detector 

effects and non-collision backgrounds

Leptons: pT > 10 GeV, |η|<2.4
● Electrons:

— “Veto” ID, miniIso/pT < 0.1
● Muons:

— “Loose” ID, miniIso/pT < 0.2
— |d0| < 0.2 cm, |dz| < 0.5 cm

Additional leptons for veto:
● PF Leptons (e, ): mT <100 GeV

— pT>5 GeV, |dz|<0.1 cm, RelTrkIso<0.2
● PF Charged Hadrons: mT <100 GeV

— pT>10 GeV, |dz|<0.1 cm, RelTrkIso<0.1

Photons: pT > 180 GeV, |η|<2.5
● “Loose” ID
● PF Charged Iso < 2.5 GeV
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M
T2

 vs E
T

miss for signal, QCD multijets

Signal: M
T2

 ~ E
T

miss Multijets: M
T2

 << E
T

miss

M T 2=2 pT
vis (1 ) pT

vis(2)
(1+cos (Δ ϕ1,2))

(assuming massless invisible particles, massless hemispheres)
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Z→ prediction: details
● Bin +jets in 3D (HT, NJ, NB) and use MC to predict MT2 shape

● N
CR: observed +jets yield in control region

— Photon treated as invisible
● P: photon purity (accounts for 0 and fakes)

— ~0.95, data driven: isolation template fit
— also have fake rate method as cross check

● f: fraction of direct prompt photons
— Account for fragmentation using QCD multijet MC
— ~0.92, MC based

● R(Z/): ~0.4-0.5, MC based
— Validated using Z→ll: R(Zll/)data vs R(Zll/)MC

● kMC: fraction of events in each MT2 bin
— Taken from Z→ MC in each (HT, NJ, NB) region
— MT2 shape from invisible Z is validated in data (+jets and W→l)
— MT2 shape uncertainty is based on full set of MC variations
— For monojet, CR binning is same as SR, no MC shape used
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Photon purity measurement
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Full uncertainties for Z→ prediction
● Photon control region:

— Statistics in data: 1-100%
— Photon purity (stat): 1-100%, typically 5-10%
— Photon purity (syst): 5% (from template variations, MC non-closure)
— Fragmentation (syst): 8% (to cover for differences in MC)

● R(Z/):
— MC statistics
— Double ratio offset: 11% (from 0.95 ± 0.11 offset, MC vs data)
— R(Zll/) uncertainty: 15-100%

• Stat uncertainty on R(Zll/) in data, 1D projections along HT, NJ, NB

● MT2 shape (multijet regions with > 1 MT2 bin):
— Full set of MC variations (theory + reco)

• 40% in last bin
• Linear morphing along MT2
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Lost lepton prediction: details
● Bin 1ℓ events in 3D (HT, NJ, NB) and use MC to predict MT2 shape

● N1l
CR: observed 1ℓ yield in control region

— Use signal triggers, require exactly 1 lepton
— To avoid signal contamination (in signals with leptons):

• MT(ℓ, ET
miss) < 100 GeV

• For ≥7j, extrapolate from 1-2b to ≥2b
● R(0l/1l)MC: ~O(1), MC based

— Accounts for lepton acceptance & efficiency, corrected for data T&P results
— Accounts for hadronic tau decays
— Uncertainty from T&P, MC variations

● kMC: fraction of events in each MT2 bin
— Taken from MC in each (HT, NJ, NB) region
— MT2 shape from ttbar+W MC (including rares) is validated in 1 lepton data
— MT2 shape uncertainty based on full set of MC variations
— For monojet, CR binning is same as SR, no MC shape used



72

Full uncertainties for lost lepton 
prediction
● 1l control region:

— Statistics in data: 1-100%

● R(0l/1l):
— MC statistics
— Lepton efficiency: 7%
— MC variations (theory + reco): 10-40%

• Theory (renormalization/factorization scales, PDF): < 5%
• JES variation: up to 40% at very low HT and ≥7j
• B-tag SF: 15% for ≥3b, < 5% elsewhere

● MT2 shape (multijet regions with > 1 MT2 bin)
— Full set of MC variations (theory + reco)

• 40% in last bin
• Linear morphing along MT2
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The transfer factors for the multijet 
estimate are extracted from data
● r(HT, MT2): fit to power law as function of MT2 in HT bins

— Stat uncertainty from fit, syst uncertainty from varying fit range
● fj(HT): computed for each HT bin

— Uncertainty covers variation in MC with min, MT2

● rb(NJ): computed for each NJ bin, integrated over HT

— Uncertainty covers variation in MC with min, MT2, HT
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The multijet estimate for the monojet 
bins uses unbalanced dijet events
● Contribution to monojet regions small, 8% at most
● Use events with 2nd jet pT 30-60 GeV to predict 0-30

— Subtract other backgrounds
taking 50% uncertainty

Mismeasured jet 2

Jet 1

E
T

miss
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Full uncertainties for multijet prediction

● Multijet regions: using min sideband
— Control region stats: 5-100%
— r fit (stat): 50-100%, depending on HT and MT2

— r fit (syst): 16-200%, depending on HT and MT2

— fj (syst): 7-25%, covering invariance assumptions in MC
— rb (syst): 8-70%, covering invariance assumptions in MC

● Monojet regions: using back-to-back dijet sideband
— Control region statistics: 5-100%
— Electroweak subtraction: 50%
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QCD multijet cross check: 
Rebalance and Smear method
● Select data multijet events
● Rebalance the jet momenta to give ET

miss ~0 taking JER into 
account

● Smear jet momenta in each rebalanced event many times 
according to JER

— JER from MC, separately for b and light flavor 
— Additional JER broadening for data from measurements

● Use smeared events to estimate QCD multijet background
— Not done for HT 200-450, no prescaled trigger

● Checked closure in QCD multijet MC
— Found under-prediction of 20-25%

• Correct prediction up, use full size of correction as uncertainty
— Checked closure in data sidebands (low min and/or low MT2)

• Found over-prediction of ~35% → Take as additional systematic



77

Rebalance and Smear gives results 
consistent with nominal prediction
● Validation of standard multijet estimate with R&S prediction in 

signal regions, integrated over MT2

● Two independent methods agree within uncertainties
— Although there may be a systematic shift, less than 1
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Systematic uncertainties for signals
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Bonus Slides: M
T2

 Results
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 collapsed, pre-fit
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 results: M
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 collapsed, post-fit
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M
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 results: monojet, pre-fit
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 results: H
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 200-450, pre-fit
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 results: H
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 450-575, pre-fit
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 results: H
T
 575-1000, pre-fit
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 results: H
T
 1000-1500, pre-fit
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 results: H
T
 > 1500, pre-fit
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Our 13 TeV results extend the 8 TeV 
limits by up to 300 GeV
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Bonus Slides: OS analysis
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On-Z selection, comparison to ATLAS

● Highlight only cuts that are different
● ATLAS overlap removal cuts use 10 GeV leptons, 20 GeV jets

Cut CMS ATLAS

Triggers Dilepton, iso OR noniso Single or dilepton

Lepton p
T

20, 20 50, 25

Lepton  || < 2.4, remove 1.4-1.6 || < 2.47 for e, || < 2.4 for 

Lepton dR > 0.1 > 0.01 for e wrt , no cut for SF

Jet p
T

35 GeV 30 GeV

Jet  || < 2.4 || < 2.5

dR(jet, lep) > 0.4 > 0.2 for non-btagged jets wrt leptons

dR(lep, jet) - > 0.2 for muons wrt b-tagged jets
> 0.04 + 10 GeV/p

T
 for muons wrt jets

> 0.4 for electrons wrt jets
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Flavor Symmetry Method Details

RSFOF=
1
2
(rμ e+rμ e

−1
) RT

rμ e=√Nμμ / N ee

RT=
√ϵμμ ϵee

ϵμ e

Measured in DY-dominated region with ETmiss < 50 GeV
Uncertainty of 10-20% from variations with lepton kinematics and event kinematics

Contributes 1-4% uncertainty to R
SFOF

Measured with orthogonal H
T
 triggers

Uncertainty of 7-9% from statistics, covers variation with kinematic variables
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On-Z results comparison with ATLAS

Process CMS, 2.2/fb CMS, scaled to 3.2/fb ATLAS, 3.2/fb

Z+jets 3.7 ± 0.7 5.4 ± 1.0 1.9 ± 0.8

Flavor symmetric 6.3 +3.8 -2.5 9.2 +5.5 -3.6 5.1 ± 2.0

WZ/ZZ + Rare 2.0 ± 0.9 2.9 ± 1.3 3.3 ± 0.8

Total prediction 12.0 +4.0 -2.8 17.5 +5.8 -4.0 10.3 ± 2.3

Data 12 - 21
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Bonus Slides: Electroweak



94

1ℓ+bb search gives the best sensitivity
for the Wh+MET topology at large Δm
● Exactly 1ℓ (e,μ) and 2 b-jets

— pT(e/μ) > 30/25 GeV
— pT(jet) > 50/30 GeV
— Look for resonance in M(bb)

● Main backgrounds: ttbar, 
W+jets, WZ

— Suppress using kinematic 
variables to exploit extra 
MET in signal

— MT, MT2
bl, also MET

— Model mainly using MC with 
corrections from data 
control regions

After preselection
EPJC 74 (2014) 3036

http://dx.doi.org/10.1140/epjc/s10052-014-3036-7
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Observe good modeling of M(bb), 
no excess in signal regions

Tightest signal regionAfter preselection

EPJC 74 (2014) 3036

http://dx.doi.org/10.1140/epjc/s10052-014-3036-7
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Selection for HL-LHC projection

● Lepton: pT > 40 GeV, |η| < 2.4
— Veto additional leptons with pT > 10 GeV

● Jets: pT > 30, |η| < 2.4
— Require exactly 2 jets to suppress ttbar → 1ℓ

● Cut on kinematic variable MCT(b1,b2): has endpoint for ttbar but not for 
signal

● Require M(bb) consistent with Higgs mass
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Sensitivity comes in the tail of MET

After full selection
except MET cut
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