

Cryogenic system New high field magnet test facility and cryogenic feed boxes at CERN

V. Benda on behalf of cryogenic team

CERN 13 June 2016

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

New test facility required

- For LHC upgrade a new generation of high field magnet is foreseen
- New High Field Magnet (HFM) test set up is required

Parameter	Requirement
Working temperature	1.9 ± 0.01 K (up to 4.5 K)
Maximum weight of the cold mass	15 [t]
Maximum energy of the magnet	10 [MJ]
Maximum magnet diameter and length	1.5 / 2.5 [m]
Maximum number of quenches/thermal cycles	10 000/1 000
Life time	20 [years]
Magnet test position	Vertical
Cool down and warm up speed (300 K – 80 K)	Adjustable
Helium management	No helium lost after a magnet quench
Cool down from 4.5 K down to 1.9 K	Quick and thermodynamically efficient
Heat in-leak of the system	Minimized
Process control and operation	Fully automatic and safe

HFM phases duration

Phase	Duration	Note
Purge of the system including a leak test	τ = 2 h	
Magnet cool down from 300 K to 80 K	т = 10 h - 200 h	If cooling speed limited
Magnet cool down from 80 K to 4.5 K	τ < 10 h	At flow of LHe 15 g/s
Cryostat filling with saturated LHe at 1.3 b	τ < 5 h	At flow of LHe 15 g/s
Magnet cool down from 4.5 K down to 1.9 K	τ = 24 h	
Nominal condition during the magnet test at 1.9 K up to 4.5 K	One week	At least
Quench recovery	т ~ 24 h	Depending on quench energy
Evaporation of LHe from the system after magnet test	т = 5 h	
Magnet warm up from 5 K to 300 K	т = 12 h - 200 h	If warming speed limited

SM18 overview

HFM integration in the vertical test facility

HFM layout

HFM P&I diagram

Cool down to 80 K & warm up to 300 K simplified flow scheme

CERN 13 June 2016

Cool down from 80 K to 4.5 K & filling

HI-IHC PROJEC

CERN 13 June 2016

Cool down from 4.5 K to 1.9 K - nominal

Quench

11

Quench recovery

CERN 13 June 2016

12

Design challenge

- Quench buffer
- Liquid/liquid heat exchanger 1.9 K
- Cryostat heat in-leak minimization
- Pre-cooling system
 - Magnet precooling by circulating HP GHe cool down by LN
 - Mass flow 90 g/s, Pressure up to 4 bar, Temperature to be adjustable
 - Maximum dT on the magnet 50 K
 - Existing pre-cooling system in SM 18 to be used
- Safety
 - Correct analysis, dimensioning of safety organs
 - Main safety valve & rupture disk (loss of vacuum)
 - Safety valve in the lambda plate
 - Rupture disks of vacuum vessels

Quench buffer justification and volume determination

5 bar

10 MJ

0.5 m³

1.6 m³

3 bar

2 m³

- Design parameters
 - Design pressure of the cryostat
 - Magnet energy
 - Volume of LHe below lambda plate
 - Volume of LHe above lambda plate
 - Volume of GHe in the cryostat
- Calculation strategy: Internal energy and adiabatic expansion
 - 1. The magnet and surrounding LHe is in closed vessel
 - dq=du-p dv, for V=const. dV=0, thus dQ=dU
 - $dU=Q_q/M$ and $U=U_0+dU$; for given U and v, the p_1 and T_1 can be found
 - 2. Quench buffer volume is connected to the cryostat
 - $p_2 = p_1 (\rho_2 / \rho_1)^{\varkappa}$
 - 3. p_2 shall be corrected as $pv/rT \neq 1$
- Without quench buffer
 - Pressure in the cryostat after quench would be
 - Loss of He via safety valve to atmosphere
 - For 100 quenches it represents
- With quench buffer
 - Pressure after quench
 - No loss of helium
- Required volume is 15 m³ in order to be safely below 4 b

25 bar 240 kg = 12 kCHF/quench 1200 kCHF

14

Limit of heat flux in 1.9 K L/L heat exchanger according to G. Bon Mardion

CERN 13 June 2016

Kapitza resistance, data & temperature difference

16

HFM test cryostat Current leads Lambda plate Liquid/liquid Thermal shield heat exchanger <u>Magnet</u> **EUCARD**²

Cryostat heat in-leak at 4.5 K optimized position of the cooling ring and the quench buffer

EUCARD²

HFM - Cluster D, twin test set up for different magnet dimensions

Horizontal Cryogenic Feeder Box CFB The same principle as for HFM

- Precooling system from 300K down to 80 K and warm up from 5K to 300K
 - Pressurized GHe is cool down by LN at 90 g/s
- Operating temperature 1.9 K
 - G/L heat exchanger in CFB
 - L/L heat exchanger in the magnet
- Recuperation of helium after quench quench buffer
 - Design pressure of the system is 20 bar
 - Volume of LHe in the magnet about 220 I
 - Volume of the quench buffer is around 1 m³
 - As the quench buffer is small it is integrated directly in the CFB
- All LHC magnets were tested on these 12 CFBs
- Time schedule of the magnet test

•	He circuits purge	1d
•	Pumping of vacuum insulation & leak test	1d
•	Cool down from 300 K down to 80 K	11h
•	Cool down from 80 K down to 4.5 K and filling by LHe	5+1h
•	Pumping down to 1.9 K	4h
•	Magnetic test	
•	Quench recuperation	4h/quench
•	Warm up	14 h

CFB synoptic

EUCARD²

HL-LHC PROJEC

Thank you for your attention...

CERN 13 June 2016