

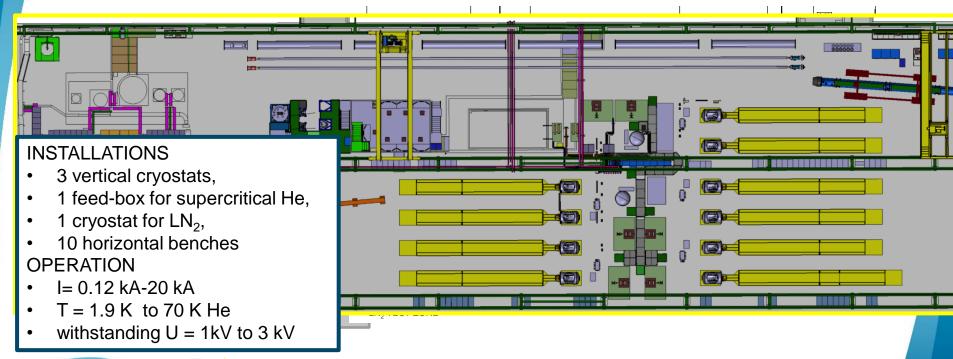
Test stand @ CERN

Marta Bajko CERN

1st International Workshop on Superconducting Magnet Test Facilities @ CERN 13th-14th of June 2016 https://indico.cern.ch/event/507584/

Content

- Magnet test stand layout @ CERN
- Vertical cryostats : on-going upgrades
 - HFM
 - Cluster D
- Horizontal test benches: on-going upgrades
 - Cluster A
 - Cluster E
- Associated facilities upgrades
- Summary and conclusions



THE SUPERCONDUCTING MAGNET TEST STAND AT CERN in SM18

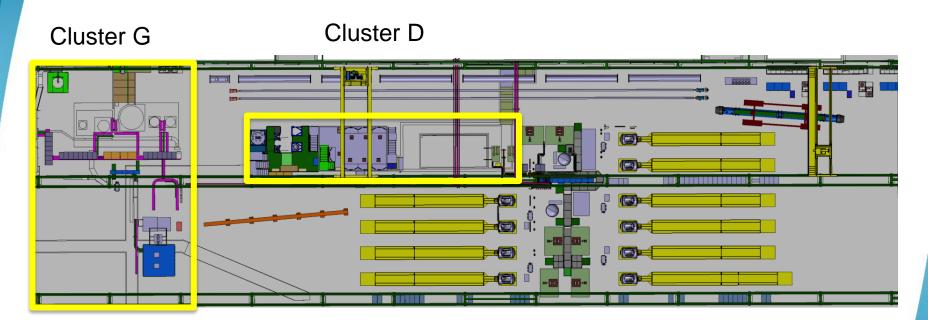
Magnet test stands layout @ CERN

INSTALLATIONS

- 3 vertical cryostats,
- 1 feed-box for supercritical He,
- 1 cryostat for LN₂,
- 10 horizontal benches

OPERATION

- I= 0.12 kA-20 kA
- T = 1.9 K to 70 K He
- withstanding U = 1kV to 3kV

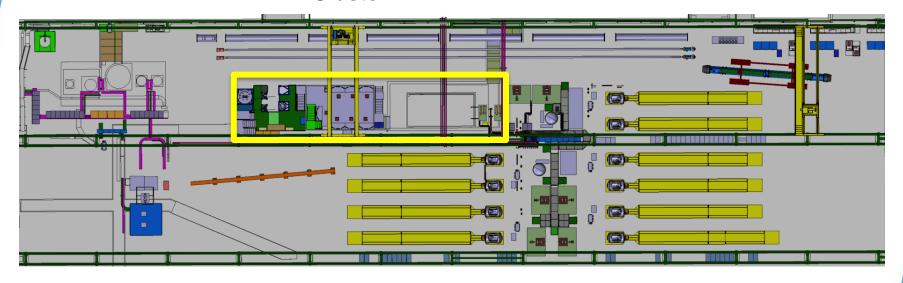


Vertical test stand upgrade

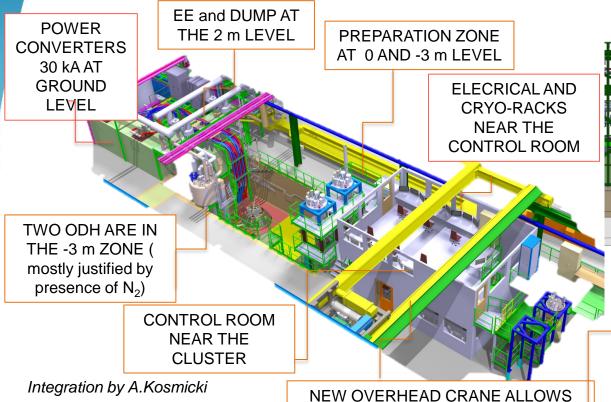
The vertical cryostats zone, called Cluster G is about 400 m^2 . It is under upgrade with an extra space called Cluster D of 150 m^2 . It will accommodate the test of **larger diameter** magnets @ **higher operating current** for HL LHC.

Cluster G upgrade

PRE-COOLING WITH



Cluster D



Cluster D test stand

CRYOSTAT: 4.8 m LONG AND Φ 800 mm @ 1.9 K

 $5.5 \, \text{m}$

2 m
0 m
-3 m

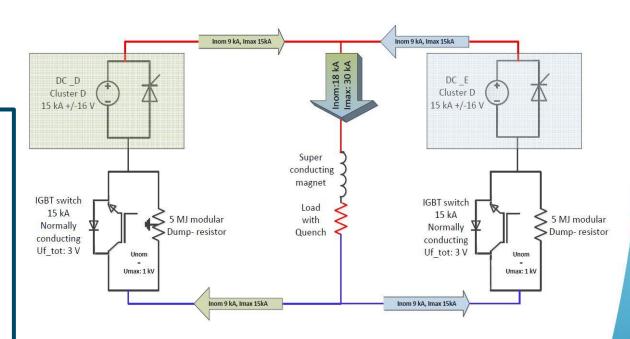
COLD He RECOVERY BUFFER -10 m³ at 5 bar, UNDER THE WORKING AREA IN CONFINED SPACE

EUCARD²

Marta Bajko for 1st International Workshop or Guperconducting Magnet restractions

HADLING 25 t AND UP TO -3 m LEVEL

8

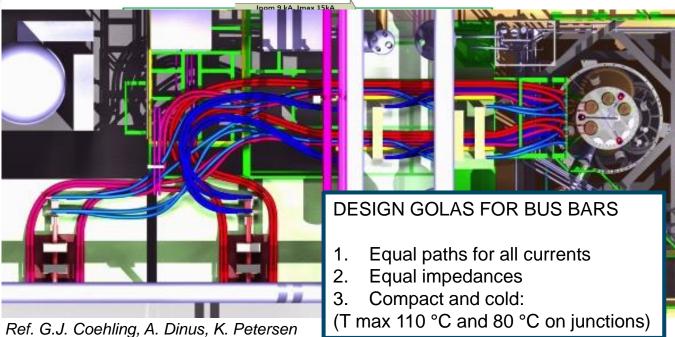

-10 m

CLUSTER D: electrical circuit

EL CIRCUIT PARAMETERS

Max stored energy 10 MJ Short Sample current 21.5 kA Magnet inductance 8.27 mH/m Nominal Ramp Rate 11 - 20 A/sMax Ramp Rate 200 A/s Max current 30 kA Max EE voltage 1 kV Reaction time: < 10 ms

DESIGN DRIVEN BY: cost reduction and operation


Ref. H. Thiessen, C. Giloux, G.J. Coehling, P. Viret optimization implying the use of two existing 15 kA power converters for the new circuit

Cluster D : energy extraction

DESIGN DRIVEN BY: Reaction time < 10 ms, which implied the use of IGBTs

DESIGN DRIVEN by optimization in operation

- Minimizing time and risk at hydraulic conne
- Minimizing the loss of He after quench

CRYOSTAT PARAMETERS (Cluster G/D)


Max internal pressure: 5 bara Magnet temperature: 1.9 K

Useful diameter: 1500 / 800 mm

Useful length in 1.9 K bath: 2.5 / 5.2 m

Max. thermal gradient: 50 K Magnetic measurements: yes

Estimated lifetime: 20 years Number of thermal cycles: < 1000 Number of Quenches: < 10000

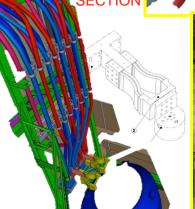
DESIGN DRIVEN BY Optimization in operation:

Flexible cables

Current lead operation homogenized with the rest of the test stand and minimizing the flow

Water Cooled Cables SPECIFIED PARAMETERS

5 kA DC Current: Max in. temperature: 28 °C. Pressure in operation: 16 bar. Maximum delta T: 10 °C. $< 2.5 \text{ ms}^{-1}$ Water speed:


Max. temperature : 50 °C. 1 kV

Operating Voltage:

(if fault to ground)

WCC: C. Gonzalves Perez

Current Leads: S. Gianelli, P. Moyret

CONVENTIONAL GAS COOLED Cu LEADS:

length: 1.7 - 2.1 m top flange Φ 260 - 280 mm connection: SC cable

He vapor flow @ 4.2 K:

20 kA lead: 0.87 g/s

30 kA lead: 1.82 g/s

15 kA lead: 0.88 g/s

Current Leads SPECIFIED PARAMETERS

20 kA / 30 kA Main circuit:

Secondary circuit: 15 kA Design pressure: 5 bara

Max. Voltage to GRD: 3.5 kV

Cluster DAQ system

NI PXIe-6358

Simultaneous X Series Data Acquisition

Example of HF system

Zoom/Alternate Images

throughpu

 16 simultaneous analog inputs at 1.25 MS/s/ch with 16-bit resolution; 20 MS/s total Al throughput

Four analog outputs, 3.33 MS/s, 16-bit resolution, ±10 V

Starting at \$ 6.086 \$ 5.355.68 (view pricing options)

48 digital I/O lines (32 hardware-timed up to 10 MHz)

. Four 32-bit counter/timers for PWM, encoder, frequency, event counting, and more

. Analog and digital triggering and advanced timing with NI-STC3 technology

Support for Windows 7/Vista/XP/2000

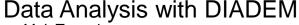
View Data Sheet

DAQ SPECIFIED PARAMETERS

Input channels: +/- 10 V ar

Nr of HF channels: 200 differential

HF frequency: 200 kHz


HF,MF,LF resolution: 16 bit resolution

HF,MF,LF accuracy: 1 mV
MF frequency: 50 kHz
Nr of LF channels: 144

LF frequency: 1 kHz

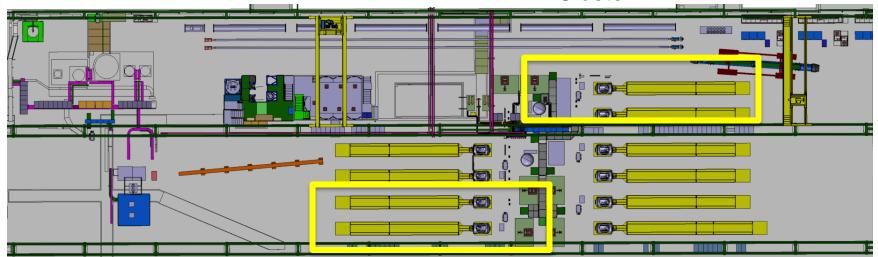
Timing: GMT synchronization

DAQ: H. Reymond, M. Charrondiere, M. I. Tapani

Analysis: H. Bajas, F. Gomez de la Cruz

Cluster D in pictures

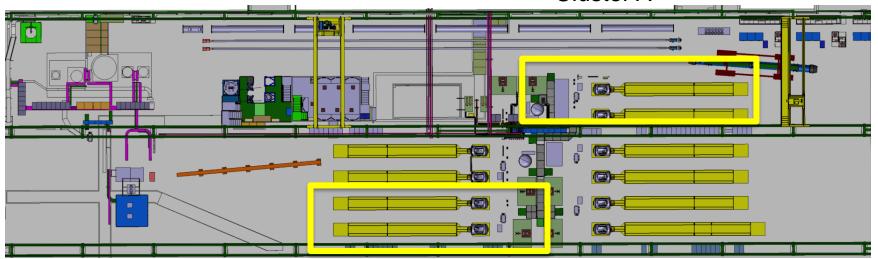
H. Botella, R. Morton, E. Perez Duenas,


Safety: E. Paulat

Horizontal test bench upgrade

Cluster E

The horizontal test zone Cluster A to F excluding D is composed by 10 benches. They are equipped with 5 independent electrical circuits allowing to test magnets up to 15 kA @ 1.9 K. Two clusters are planned to be upgraded to 20 kA capacity.



Horizontal test bench upgrade

The UPGRADE is DRIVEN by HL-LHC needs: Cluster E

Target for prototype test: $90\% I_{SS} \le 20 \text{ kA}$ Target for series test : $108\% I_{nom} = 17.8 \text{ kA}$

Cluster E will have the same characteristics. Foreseen later.

Magnet weight: 25 tonnes

Operating temperature: 4.2 K and 1. 9 K Max. Operating current: 20 kA, 2 x 2 kA

Max. Pressure in the magnet in case of quench: 20 bars

Max. Test voltage: 3 kV

Facilities Upgrade

UPGRADE DRIVEN BY The recommendation enabling to carry out the full test programme with no contraints

CRYOGENIC COOLING PRODUCTION: + 35 g/s LHe

Needs essentially for HL-LHC IT STRING run in parallel with magnet testing

DEMINERALISED WATER PRODUCTION: + 150 m³/h

Needs for demineralised water entirely coming from magnet operation

HANDLING: 25 t and longer rope

Needs for overhead crane entirely coming from magnet operation

nCONTROL ROOM

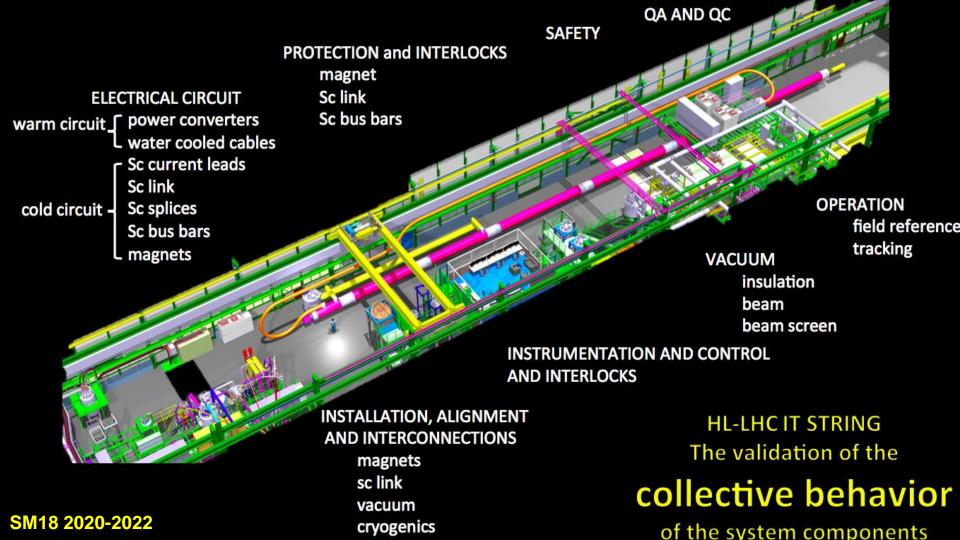
Needs to extend the small control room of the vertical. Test facility to be used

also for horizontal benches and Sc link

For mid 2016

Operational

For 2019


Operational

Thank you for your attention

Spare slides on Facilities upgarde

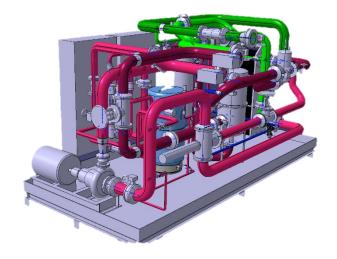
Test stands : cryogenics upgrade

An additional 35 g/s
liquefier (thus bringing the total production capacity for LHe at 4.2 K to 60 g/s)

The existing total pumping capacity in SM18 at **1.8 K is 12 g/s**, **combining** the capacity of **WPU1 and 2**.

If need for IR STRING a dedicated 3rd WPU shall be installed.

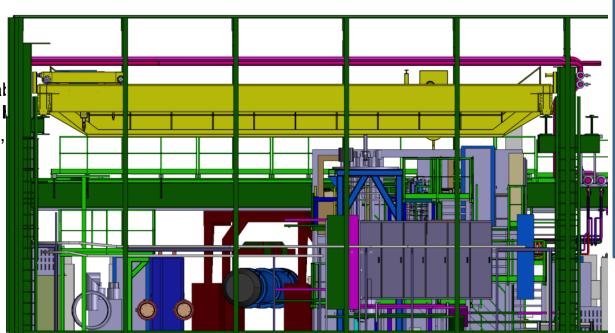
Foreseen for 2019


Test stands: demineralized water production

The demands for the magnet test stations, including the IT String, will rise to a peak of 1.7 MW (142 m³/h).

At present SW18 houses a demineralised water station with a thermal capacity of 800 kW limiting the operation to two test stands

Operational from April 2016



Ref. A. J. Broche

Test stand: HADLING upgarde

To enal into the I height,

CHARACHTERISTICS

Max. 10 m long 27 t in angle? 2 times installation and 2 times dismounting the STRING

Max. 25 t 5 m long + turn from horizontal to vertical with dedicated tool r than nserts ne top

10-15 m long with specified handling points to be studied and adapted in addition to the LHC magnets. Weigth aprix. 26-27 t.

Ref. R. Rinaldesi

Estimate of the heaviest HL LHC magnets weight:

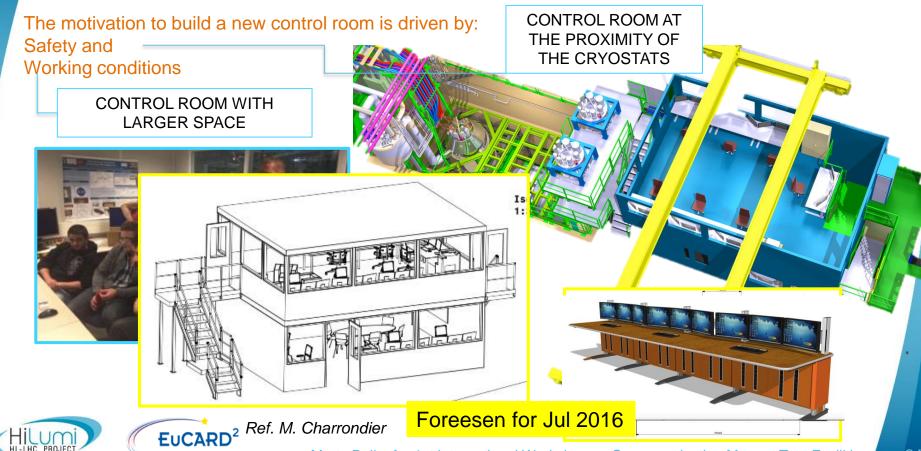
 Q2

 cold mass
 cryostat
 cold mass
 MCBXFA
 cryostat

 8.6 m
 9 m
 7 m
 1.2 m
 9 m
 9 m

 22500 kg
 3780 kg
 18313.95 kg
 3139.935 kg
 3780 kg
 3780 kg

 Total:
 26280 kg
 Total
 25233.49 kg


25 T HANDELING CAPACITY WAS KEPT

Operational from February 2016

Marta Bajko for 1st International Workshop on Superconducting Magnet Test Facilities

New Control room

