

Magnet Test Facility at LBNL

M. Marchevsky and the MTF Team, Lawrence Berkeley National Laboratory Berkeley, CA U.S.A.

1st Intl. Workshop of the Superconducting Magnets Test Stands, CERN, June 13-14, 2016

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

The Team

Berkeley Center for Magnet Technology (BCMT)

Steve Gourlay

BCMT Magnet Test Chair

GianLuca Sabbi

Magnet Test Facility

Physicist / PI: **Maxim Marchevsky** Electronics Engineer: **Marcos Turqueti** Liquid He plant operator: **Paul Bish** Electronics Technician: **Jordan Taylor** Cryogenic / Mechanical Tech

Short Sample Test Facility

Physicist / PI: Xiaorong Wang Physicist: Tengming Chen Postdoc: Lyiang Ye Electronics/Mechanical/CryoTech: Hugh Higley

Mechanical Engineering and Tech Support

Mechanical Engineers: Ray Hafalia, Dan Cheng

Tech lead: Tom Lipton

EUCARD

Mechanical Technicians: James Swanson, Matt Reynolds, Ahmet Pekedis

Role of the MTF

- An essential tool for efficient, reliable and safe characterization of magnet performance: training, quench locations, quench propagation dynamics, ramp-rate behavior, strain distribution, mechanical instabilities, protection limits, and field quality
- An array of diagnostic tools to study and understand magnet behavior and provide feedback to the magnet designers
- A platform for testing new ideas, concepts and instrumentation, allowing us to keep a leading edge in magnet technology and expand into new areas

Magnets tested recently:

- HQ01a (5/2010), HQ01b (6/2010), HQ01c (9/2010), HQ01d (4/2011), HQ01e3 (12/2012)
- HD3a (12/2011), HD3b (4/2013)
- CCT1 (12/2013), CCT2 (05/2014), CCT3a (03/2016)

LBNL's versatile magnet test facility can be operated with a smaller group of people, greater flexibility, faster turnaround, some unique instrumentation capabilities, and at a lower cost.

Location

Berkeley, CA

LBNL Bldg. 58

EUCARD²

Look inside bldg. 58

Main cryostat

- ~ 3 m long stainless cryostat (made by Precision Cryogenics)
- ~ 1600 L fill capacity (empty); typically ~ 500-800 L with the magnet
- Max. operational pressure: 13 psi
- ~ 0.9 m ID (adjusted with top plate rings to 0.8 m header diameter
- 4.2 K base temperature

Magnet header & stand surface

- Maximal magnet height ~ 2.2 m
- Maximal magnet weight: 3000 kg (tested)
- Header weight: 340 kg

EUCARD²

Maximal magnet diameter ~0.8 m

Ring-adjustable top plate ID

Handling cranes (10 T, 2 T)

10 T crane (covering the magnet stand area)

EUCARD²

Helium liquifier and cryo-monitoring

Liquifier control panel

200 W

- In operation since the 1980, and still running strong
- Liquid Helium production rate: 40 l/h
- Typical cooldown period from room temperature to

4.2 K: ~1.5 days

Inlet and return He lines

Monitoring is available remotely, and on mobile devices

Compressor and Helium gas storage

- Sullair series C20L oil flooded screw compressor with 400 HP 60 Hz 480 V Westinghouse motor
- Nominal output pressure to the coldbox: 240 psi

- Storage capacity: ~1500 L (liquid equivalent).
- Storage pressure: up to 245 psi
- Additional roof storage 500 L equivalent

M. Marchevsky - 1st Intl. Workshop of the Superconducting Magnets Test Stands, CERN, June 13th-14th, 2016

LBNL-supported Cryo Upgrade

Re Co	Ho de		Linde (M1630)
		Capacity	218 W @ 4.6 K, 70 L LHe/h
		LN2 Consumpti on	80 L/h
		Electrical Power	80 kW
		Cost	\$1 M

With additional expenses on recovery system, piping, instrumentation, civil engineering, support utilities and labor, the net planned upgrade figure is ~ \$ 2,500,000

Control room

- Many "legacy" indicators & controls on the panels... but these days the test is controlled exclusively through the LabView / LabWindows interfaces (to PS, DAQs & quench detection) over Ethernet network.
- Analog QDS system and lead over-voltage indicators are still used for redundancy and included in the power supply interlock loop.

EUCARD²

Safety

BERKELEY LAB

Work Planning & Control Integrating Safety

- Power supply, extraction system, and magnet leads are protected with interlocked doors
- Emergency stop buttons
- Cryogenic safety rules and PPE
- Limited area access during testing

WPC (Work Project Control) database

EUCARD

- LOTO (LockOut TagOut) procedures for the power supply and extraction system
- Regular Safety Training of the facility personnel
- Interlocks (mechanical and electrical) on all major systems and access doors

Header electrical interfaces

Sufficient amount of signal lines available to accommodate any magnet

- Vapor-cooled current leads (tested to 17.5 kA)
- Voltage monitored

EUCARD²

- 200+ Hypertronic connector interface wire lines available
- Bronze twisted pair wiring
- Vtap wiring hipoted to 1 kV at room temperature and at 4.2 K

Power supply and DC current lines

To the test area

EUCARD²

New main power supply has been installed and fully commissioned in 2015.

- Made by Alpha Scientific
- Maximal current: 25 kA (limited to 23.5 kA by voltage drop on the lines + SCRs balance resistors); current is monitored via voltage across the internal shunt.
- Maximal voltage: 20 V

- Remotely controlled from the MTF control room via Ethernet interface (dedicated network line)
 - Current regulation accuracy: 200 ppm

Energy Extraction System

4xN5946FC220 SCRs

- 6000A @ 55C each
- Max voltage 1800V
- Min extraction time 1 ms

EUCARD²

Dump Resistor

Capacitor Bank

Extraction upgrade with IGBTs is planned in 2017

Magnet protection

- Four protection heater lines and 4 spot heater lines available on the header
- Four interlocked MTF Protection Heater circuits
- Newly designed and built HFUs

- 4 HFU units (+2 spare); each has 2 independently controlled outputs
- Support for 8 independent protection heater circuits
- IGBT-based; switching time < 0.1 ms
- Maximal voltage 350 V
- Internal capacitors 5 mF

FPGA-based quench detection system

- 2 µs response time (with internal 40MHz clock)
- Programmable signal recognition capability
- Flux jump identification and counting
- Data 1 MSPS four channels data logging
- Programmable digital delay line for extraction
- Programmable heater firing sequencer
- Inductive voltage automatic compensation

Auxiliary DAQs and software

Flexibility in choosing data acquisition options

Yokogawa WE7000

2x NI PXI-6123

EUCARD²

- 4 channels at 1 MHz
- 32 channels at 100 kHz
- Proprietary acquisition & viewer software; data are exportable into Labview waveforms and CSV formats

Signal flowchart for a typical magnet test

DAQ cards and software

EUCARD²

- 160+ DAQ channels at 500 kHz
- National Instruments PXI-6123 cards interfaced to remotely programmable custom built HV (1000 V to ground) buffer amplifiers.
- NI LabWindows-based acquisition and viewing software; using custom data format. Data are exportable to NI waveform / Diadem formats, and to CSV.
- Additional LabView-based signal analysis software for automated threshold based quench localization, MIITs calculation, and extraction diagnostics

Instant data analysis

Automated data analysis for quench localization

Short sample & subscale coil test facility

A versatile system accommodating short samples as well as subscale coils

15 T solenoid SC magnet

- J_c testing as a function magnetic field, strain, and temperature
- 15 T background field at 4.2 K
- 4.5 kA single power supply
- 25 kA SC transformer
- Variable-temperature insert
- U springs for strain dependence
- RRR measurement of extracted strands
- Cryogen-free system with high measurement throughput
- Tested NbTi and Nb₃Sn samples, HTS coils, Nb₃Sn undulators

Instrumentation

Xiaorong Wang

Magnetic measurement capability

High resolution and sampling rate

Rotation drive

Encoder

Shaft

Harmonic coil

Magnetic measurement setup

High performance and measurement throughput:

- 24-bit resolution (10⁻⁵ 10⁻⁶ of main field amplitude depending on the probe radius)
- 100 kHz sampling rate
- Probe rotation speed 1.5 Hz

Multipole fluctuation correlated to flux jump in the magnet

Xiaorong Wang

EUCARD²

Field quality studies

Study of high-field Nb₃Sn superconducting magnets

- Reproducibility and uniformity of field quality during magnet assembly and operation. Correction of geometric field error
- Persistent current effect from high-J_c conductor and its correction
- Dynamic effect due to inter-strand/inter-filament coupling
- Magnet field quality as a system behavior. Multipole fluctuation due to the interaction between magnet (flux jump) and power supply

Measurement and diagnostics development

- Development of high-performance measurement system based on rotating coils for warm and cold measurements
- Probe and system calibration in collaboration with FNAL (J. DiMarco)

Analysis

- Use of standard software (Opera, Roxie) and development of in-house code
- Strand/cable stack measurement data as input to the model in collaboration with Ohio State University (M. Sumption)

Xiaorong Wang

Inductive quench antennas

MQXF (warm bore)

Development and propagation of a slow quench in HQ02b at 6 kA recorded by the quench antenna

Acoustic emission sensor system

- Acoustic emission detection / triangulation system using in-house developed cryogenic amplified sensors (up to 16 sensors); 5 cm quench triangulation accuracy
- Data acquired with either Yokogawa or NI DAQ sub-system

EUCARD²

Location triangulation using in-house developed software (LabView-based)

Cryogenic video camera

Quench in the CCT3 dipole

Live top view of the CCT3 magnet at 4.2 K in helium bath

Cryo-electronic interfaces

Analog to Digital Converter

- 4.2 K operation
- 16 channels
- 24 bits
- **-** 500 μW
- 6.25 kSPS (per channel)
- Design for Strain Gauge measurements

EUCARD

M. Turqueti

- 16 multiplexed differential inputs
- Built-in a gain x50 amplifier
- 60 kSPS (per channel)
- 30 K operation
- 4.2 K operation using built-in heater

Quality control tools

EUCARD²

Hipot Sytem

- Based on Bertan 0-5 kV analog power supply
- Current thresholds: 0.8, 8, 80 and 800 μA

- Variable ramp rate, thresholds
- Data saved as CSV and images

- Controls all tester parameters
- Data saved as CSV and images

Test Facility Summary

- I large cryostat (1800 I / 0.9 m diam. / 3 m long), in-ground pit
- 1 smaller cryostat with 15 T superconducting solenoid
- Several smaller sized cryostat for short sample and subscale coil studies
- Two handling cranes (10 T and 2 T capacity)
- Liquid He plant with 40 l/h productivity
- 4.2 K base operating temperature
- 25 kA (23.5 kA usable) main DC power supply
- 4.5 kA secondary power supply (short sample & subscale tests)
- 200+ simultaneous acquisition channels (500 & 100 kHz) in 3 independent DAQs
- SCR-based extraction with 20-120 m Ω dump resistor
- 4 heater lines powered with IGBT-controlled HFUs (5mF / 300 V)
- Digital FPGA-based QDS system
- Magnetic measurement system
- Strain gauge measurement system
- Quench antenna arrays

EUCAR

- Acoustic emission / triangulation sensors (up to 16)
- Cryogenic video camera for real-time magnet view
- Cryo-electronic magnet interfaces (DAQ, FPGA, multiplexer) operating at 4.2 K
- Automated electrical QA tools (hi-pot and impulse tests)

EUCARD²

Thank you!

M. Marchevsky - 1st Intl. Workshop of the Superconducting Magnets Test Stands, CERN, June 13th-14th, 2016