

Mechanical measurements in Superconducting magnets

M. Guinchard – CERN – EN/MME Mechanical Measurement Lab

EUCARD² Geneva, 14th June 2016

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

Outine

- Introduction
- Overview of mechanical measurement systems :
 - Electrical strain gauges
 - CERN-LARP collaboration results
 - Software and data management
 - Optical fibre strain sensors
- Mechanical testing equipment's
- Conclusions

Why mechanical measurements in magnets ?

- Validate Finite Element Analysis (FEA) during :
 - Assembly phases;
 - Thermal cycles (down to 1.9K);
 - Powering tests.
- Check the integrity of the structure during assembly phases.

Current situation at CERN

Section	Diameter	Field	gauges	ND Of wires
	540 mm	12.5 T peak field	48	156
	570 mm	16 T peak field	48	148
	1030 mm	13 T bore field	40	116
	615 mm	12.1 T bore field	64	104
00	580 mm	11.21 T bore field	180	416
	Section Section	SectionFrameworkImage: Section540 mmImage: Section570 mmImage: Section1030 mmImage: Section615 mmImage: Section580 mm	SectionFieldImage: Section540 mm12.5 T peak fieldImage: Section570 mm16 T peak fieldImage: Section1030 mm13 T bore fieldImage: Section615 mm12.1 T bore fieldImage: Section580 mm11.21 T bore field	SectionFieldgaugesImage: Section540 mm12.5 T peak field48Image: Section570 mm16 T peak field48Image: Section1030 mm13 T bore field40Image: Section615 mm12.1 T bore field64Image: Section580 mm11.21 T bore field180

EUCARD²

Tools for mechanical measurements

	Electrical strain gauges	Capacitive gauges	Optical fiber sensors	Non contact video systems
Principle	Resistive	Capacitive	Bragg	Image processing
Loading cases	All	Compression	All	All
Magnetic effects	Affected	Non affected	Non affected	-
Cryogenic temp.	Affected	Affected	Affected	Only RT

Electrical strain gauges

Wheatstone bridge equation : •

$$\frac{V_0}{V_s} = \frac{K}{4} \left(\frac{\Delta L_1}{L_1} - \frac{\Delta L_2}{L_2} + \frac{\Delta L_3}{L_3} - \frac{\Delta L_4}{L_4} \right)$$

EUCARD

- Wheatstone bridge config. :
 - 1/4 Bridge
 - 1/2 Bridge
 - Full Bridge

Electrical strain gauges

Electrical strain gauges

Electrical strain gauges – LARP Collaboration

MQXFS magnet was equipped with LARP & CERN stations:

- 4 biaxial stations on the shell
- 4 biaxial stations on the 4 coils

EUCARD²

Electrical strain gauges: LARP Collaboration

EUCARD²

Electrical strain gauges: LARP Collaboration

MQXFS1 - Coils - Azimuthal Strain

11

Electrical strain gauges: LARP Collaboration

DAQ, Software and data management

Electrical strain gauges Optical Fiber strain sensors Capacitive gauges Current Temperature

8 channels/module ¼, ½ and full bridge 24 bits, firewire synch. Fs : 0,1Hz up to 20kHz Synchronous measurement

Settings of the DAQ Online vizualisation Online calculation Data storage management Measurement on trigger

DAQ, Software and data management

Repeatability & Reproducibility:

Trueness:

EUCARD²

- ZWICK Tensile machine (400kN) UTS Tensile Machine (200kN)
- Cryostat for tests up to 25kN Temperature Range : 4.2K 293K in the bath
- Cryostat for tests up to 100kN Temperature Range : 4.2K 293K in the bath
- Compression tools up to 400kN Temperature Range : 77K 293K in the bath

Stiffness determination of Nb3Sn cable stack

EUCARD²

Tests performed at RT and 77K New setup is under fabrication !

Stiffness determination of Nb3Sn cable stack

Digital Image Correlation (under evaluation)

System interesting for relative measurements, poor resolution

HILUMI

Conclusion

- Several tools for mechanical measurements are available for low temperature and powering tests. These equipment's are validated;
- Collaboration between labs is crucial to increase our measurement confidence;
- Collaboration with LARP to check electrical strain gauges was successfully done;
- We expect to use FOS in the field in 2017;
- See you this afternoon at SM18 in front of the equipment's !

Thanks ! Questions ?

