
The objective of this work is to solve numerically solve the Gross-Pitaevskii
equation
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Note the different parameters: γ is dissipative coeficient, G is the non-linear
coefficient and Ω is the angular velocity of the super-fluid.

• Discretize it in a box of dimensions [−10, 10]× [−10, 10] and 128 points in
each direction. To start, use the parameters

γ = 0.0 (2)
G = 1000 (3)
Ω = 0.85 (4)

You are advised to use the provided code. There is the class template
Field2D<T> as a two-dimensional array. Code for visualization with the
SDL 2.0 library https://www.libsdl.org/ is also provided. Compile with
-std=c++11 -lSDL2

• Set the initial condition
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and draw the wave-function using the provided code

• Discretize the spatial derivatives as
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• and use the Euler method to time evolve the system

ψn+1 = ψn + F (ψ)∆t (8)

• Use a ∆t sufficiently small to ensure stability

• Now, solve the equation, using the fourth order Runge-Kutta method
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• Parallelize the code using OpenMP

• We now, want to find the ground state of the system. For that consider a
small dissipative term γ = 0.1 and, at each step, impose the normalization
condition ˆ

dx dy ψ(x, y)∗ψ(x, y) = 1 (9)
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