The objective of this work is to solve numerically solve the Gross-Pitaevskii

$$(i-\gamma)\frac{\partial\psi}{\partial t} = -\frac{1}{2}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2}\right) + \frac{x^2 + y^2}{2}\psi + G|\psi|^2\psi - i\Omega\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)\psi \tag{1}$$

Note the different parameters: γ is dissipative coeficient, G is the non-linear coefficient and Ω is the angular velocity of the super-fluid.

• Discretize it in a box of dimensions $[-10, 10] \times [-10, 10]$ and 128 points in each direction. To start, use the parameters

$$\gamma = 0.0 \tag{2}$$

$$G = 1000 \tag{3}$$

$$\Omega = 0.85 \tag{4}$$

You are advised to use the provided code. There is the class template Field2D<T> as a two-dimensional array. Code for visualization with the SDL 2.0 library https://www.libsdl.org/ is also provided. Compile with -std=c++11 -1SDL2

• Set the initial condition

$$\psi(x, y, 0) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x^2 + \frac{y^2}{4})\right) \tag{5}$$

and draw the wave-function using the provided code

• Discretize the spatial derivatives as

$$\frac{\partial \psi}{\partial x} \rightarrow \frac{\psi_{i+1} - \psi_{i-1}}{2\Delta x} \tag{6}$$

$$\frac{\partial \psi}{\partial x} \rightarrow \frac{\psi_{i+1} - \psi_{i-1}}{2\Delta x} \tag{6}$$

$$\frac{\partial^2 \psi}{\partial x^2} \rightarrow \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{(\Delta x)^2} \tag{7}$$

• and use the Euler method to time evolve the system

$$\psi^{n+1} = \psi^n + F(\psi)\Delta t \tag{8}$$

- Use a Δt sufficiently small to ensure stability
- Now, solve the equation, using the fourth order Runge-Kutta method

$$k_{1} = F(\psi^{n})$$

$$k_{2} = F(\psi^{n} + \frac{\Delta t}{2} k_{1})$$

$$k_{3} = F(\psi^{n} + \frac{\Delta t}{2} k_{2})$$

$$k_{4} = F(\psi^{n} + \Delta t k_{3})$$

$$\psi^{n+1} = \psi^{n} + \frac{\Delta t}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

- $\bullet\,$ Parallelize the code using OpenMP
- We now, want to find the ground state of the system. For that consider a small dissipative term $\gamma=0.1$ and, at each step, impose the normalization condition

$$\int dx \, dy \, \psi(x,y)^* \psi(x,y) = 1 \tag{9}$$