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Running of fundamental constants and gauge coupling unification

Our Universe is ruled by four fundamental interactions very different in
strength: the electromagnetic, strong and weak interactions and gravity.

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.
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Fig. 1 — Relative strength of the four known fundamental interactions with respect to
the electromagnetic force.

Aside from gravity, which is described by the classical theory of General
Relativity, the three remaining forces are described by a quantum theory,
which is known as the Standard Model (SM). The SM is one of the most
successful and well-tested theories in modern physics. However, it does not
offer an answer to several fundamental questions like:

WHY ARE THE FUNDAMENTAL INTERACTIONS SO DIFFERENT?

The answer to this question may be that perhaps, at some point in the History
of our Universe (when it was more energetic), the four interactions were the
same, i.e. they were unified. So why are they so different today?

The SM predicts that the values of the fundamental constants change with
energy. This can be only understood in the light of a Quantum Theory as the
SM. Aside from gravity (for which there is not a quantum description), the
running ! of the fundamental constants g; (i = 1,2,3) which describe the
electromagnetic, weak and strong interactions is given by simple
mathematical equations, called renormalization group equations (RGEs), of
the form:
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D) =gf® B, t=In(u/u). Eq. (1)

at lowest order in quantum effects (things get actually more complicated if we
go to higher orders in quantum effects). The functions ﬁéi)(t) are called the

one-loop beta functions for the gauge couplings. In the above equation, u is

' From now on running means the variation of some parameter with energy.



the energy scale at which we want to compute g; and y, is a reference scale
such that g;(0) are known. Therefore, the gauge coupling constants will be
functions of ¢, i.e. g;(t). The quantities B; are constants and depend on the
model in which we are calculating the running of the gauge couplings g;. The
computation of the B; is highly non trivial and requires knowledge of advanced
Quantum Field Theory. Therefore, we will not say anything about how these
quantities are obtained. Notice that, it is sometimes convenient to work with
the couplings a; = g?/(4m).

PART | - DO GAUGE COUPLINGS UNIFY IN THE SM AT LOWEST
ORDER IN QUANTUM EFFECTS?
In order to answer this question, take the following steps:
1.1) Solve Eq. (1) to obtain an analytical expression for gZ(t) and a; *(t).

The several couplings referred up to now are related through the following
relations:
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Experimentally, it is known that, at the reference scale of the Z boson mass
m, = 91.2 GeV:

agt(my) =127.916 + 0.015,
sin? 8,,(m;) = 0.23116 + 0.00013, Egs. (3)
a;(my) = 0.1184 + 0.0007 .
For the SM:
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Eq.(4).

1.2) You can now start testing gauge-coupling unification in the SM. For that:

i) Find (analitically) the expression for the energy scale p,, for which g,
and g, unify and, taking into account the experimental values given
above, find the common value of @; and a, at y;,.

ii) Imposing now a;(u,) = a,(u12) = as(u,,) , make a prediction for
as;(m;) and compare it with the measured value. Is there gauge
coupling unification in the SM?

iii) Make a plot of a; *(u) varying u from m, to 10'® GeV to observe that,
in fact, there is no SM gauge coupling unification at lowest order in
quantum effects, even if one considers the experimental errors.



1.3) In some more elaborated theories like Grand-Unified or String Theories,
the k, factor may be different from that of the SM and, in principle, gauge
coupling unification could be possible. In order to test whether this is the case
find the values of ky for which the three gauge couplings unify at a certain
scale p;. Determine the sets (ky, uy). Verify the result graphically.

|.4) Gauge coupling unification at two-loops? (leave this to the end)

We have just seen that the gauge couplings do not unify in the SM. This
conclusion was based on the analysis of the RGEs at lowest order in quantum
effects (one-loop). One may wonder if gauge-coupling unification occurs once
we consider higher-order effects or, in other words, if one takes into account
the two-loop RGEs. In order to analyse this, you must accept that all
parameters in the SM run and that the running of a certain parameter
depends on the other parameters of the theory. In general, for a parameter X
we have, at second-order in quantum effects:
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where gV (t) and B{P(t) are the one and two-loop beta functions for the

parameter X, respectively. We will consider a simplified version in which the
relevant parameters for the gauge coupling beta functions are:

- The gauge couplings themselves

- The top quark Yukawa coupling y;, which is nothing but the value of the
coupling between the top quark and the Higgs field in the SM.

- The quartic Higgs coupling 4, which is related with the Higgs self-interacting
term A¢* present in the SM lagrangian.

The relevant beta functions for our next exercise are:

e The B{(t) given in Eq. (1)
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Consider moreover that y,(m;) = 1.0 and A(m;) = 0.5.

Solve (numerically) the system of differential equations for g;(t),y.(t) and
A(t), and plot the energy dependence of a; *(t). Compare with the one-loop
case and answer the question: is there gauge coupling unification in the
SM at the two-loop level?

PART Il - RESCUED BY SUSY (SUPERSYMMETRY)

One of the most appealing theories beyond the SM is supersymmetry (SUSY)
which is related with a new fundamental symmetry of Nature. The minimal
supersymmetric SM extension is called the Minimal Supersymmetric Standard
Model (MSSM). Due to the structure of the theory and the presence of new
degrees of freedom (each known fundamental particle has its superpartner),
the fundamental constants in the MSSM run in a different way. For instance,
for the gauge couplings g; the RGEs have the same structure as in Eq. (1) but
the parameters B; are now:
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1.1) Repeat the steps |.2.ii and 1.2.ii for the MSSM. What do you conclude?
Isn’t it amazing?!!

1.2) In 1l.1 you have considered that SUSY is valid from m; up to higher
scales. However, this is not actually true, otherwise we should have observed
SUSY particles already at LEP or at the LHC. So, most likely, SUSY is only a
true symmetry of Nature for energy scales u > usysy, while for u < ugysy, the
valid theory is the SM.

Taking the above into account, give an expression for a; (), for u > ugysy-
Make a plot of a;*(u) considering that SUSY is broken at ugygy = 1 TeV. Is
unification of the gauge couplings preserved?



