

What have we learned from missing transverse momentum measurements?

4th Heavy Ion Jet Workshop Ecole Polytechnique in Palaiseau, France On behalf of the CMS experiment at the LHC

Observerion of Dijet Asymmetry in PbPb

0

- Central PbPb A_J modification relative to pp and $MC_{0.3}$ 0.2 Look outside the jets for the missing momentum (e)

0.25

<u>-</u>0.25

Initial Study of Missing Momentum

 $\mathbf{p}_{\mathrm{T}}^{\parallel} = \sum -p_{\mathrm{T}}^{\mathrm{i}} \cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{Dijet}}\right)$

- Balancing (Missing $p_T > 0$) spectrum softer
- Large contribution found far from jet cones

New Study of Dijet Missing P_T

- pp: 5.3 pb⁻¹ at 2.76 TeV
- PbPb: 166 μb⁻¹ at 2.76 TeV Increase from initial 6.7 μb⁻¹
- Dijet selection:
 - p_{T,1} > 120 GeV
 - p_{T,2} > 50 GeV
 - |η₁|, |η₂| < 1.6 (0.6)
 - Δφ_{1,2} > 5π/6
- Track Selection:
 - p_T > 0.5 GeV
 - |η| < 2.4

anti-k_t calorimeter jets (See backup slide <u>here</u>)

Corrected for efficiency/fake rate (See backup slides here and here)

4

Analysis: The Dijet Axis

Analysis: Binning Tracks by Δ

Analysis: Binning Tracks by Δ

Analysis: Binning Tracks by Δ

Missing $P_T vs. \Delta with R = 0.3$

- Missing p_T measured in Δ increments of 0.2
- In central PbPb, balanced by lower p_T particles

Missing PT and Jet Radius Motivation

- Left: Jet shape in Gen. PYTHIA for different R
- Right: Shifting third jet position in Gen. PYTHIA relative to subleading jet for different R

Multiple R Missing $P_T vs. \Delta$

Zoom on pp and PbPb Distributions (I)

Zoom on pp and PbPb Distributions (II)

- Subleading (> 0) peak shifts outward in Δ from R = 0.2->0.5
 - Third jet possible position pushed out with R increase

pp and PbPb Cumulative Curves (I)

pp and PbPb Cumulative Curves (II)

- Curve difference between PbPb and pp in first bin Δ
- For all R, curves similar between PbPb and pp with $\Delta > 0.2$
- Primary difference of PbPb and pp is in softening spectra

Difference of PbPb and pp (I)

Difference of PbPb and pp (II)

- High p_T change in first bin Δ from R=0.2->0.5 within systematic
- Low p_T excess increases in both magnitude and angle with R=0.2->0.5
 - Final bin is catch-all; increase w/ R suggests growing tail

dN/dp_T for all R

- Low p⊤ contribution (0.5-1.0 GeV) ordered in R
- R = 0.2-> R = 0.5 difference greater than summed statistical and systematic error

Summary

- Missing p_T finely measured through large angles Δ
 - Different dijet configurations were sampled by R variation
- Cumulative curves similar for all jet R in PbPb and pp
 - Modification primarily of constituents carrying momentum
- Future: look to generator comparisons and unquenched probes

-20

Impact of Tracking Cuts on Missing P_T

Jet Reconstruction with HF/Voronoi Algorithm

- UE at mid- η mapped by energy deposition at forward- η
- Equalization removes negative energy towers
 - Shifted from surrounding positive energy towers
- An energy correction based on fragmentation is applied to minimize bias from non-linear calorimeter response
 - Applied to pp and PbPb

Track Reconstruction and Correction

- Correct for efficiency/fake rate (+ secondary/multiple reco. in pp)
- Iterative tracking corrections in p_T , ϕ , η , centrality, and minimum jet distance

Summary of Systematics R = 0.2/0.4/0.5

	R = 0.2		R = 0.4		R = 0.5	
Δ	< 0.2	0.2–2.0	< 0.2	0.2–2.0	< 0.2	0.2–2.0
Jet reconstruction	1	0.1–0.4	1	0.1–0.5	1	0.1–0.7
Data/MC differences for JES	2	0.1–0.5	2	0.1–0.4	2	0.1–0.3
Fragmentation dependent JES	1	0.1-0.4	1	0.1–0.3	1	0.1–0.3
Track corrections	2	0.2–0.7	2	0.1–1.1	2	0.1–1.1
Data/MC differences for tracking	1	0.1–0.2	1	0.1	1	0.1
Total	3	0.2–0.9	3	0.3–1.1	3	0.2–1.1

3rd Jet Position in Gen. PYTHIA

Gen. PYTHIA Jet Shapes

Dijet Axis and Non-Closure

Missing $P_T vs. \Delta with R = 0.3 (A_J < 0.22)$

Missing $P_T vs. \Delta with R = 0.3 (A_J > 0.22)$

- Low p_T particles enhanced by cut on $A_J > 0.22$
- Cumulative curves track despite scale change

Missing $P_T vs. A_J$ with R = 0.3

Hemisphere Multiplicity Difference

 Multiplicity excess towards subleading side shows centrality and A_J dependence

Multiple R Missing $P_T vs. \Delta (A_J > 0.22)$

Multiple R Missing $P_T vs. \Delta (A_J > 0.22)$

Multiple R Missing PTvs. AJ

Difference of PbPb and pp vs. AJ

Potential R dependence in low p⊤ contribution (0.5-2.0 GeV)

10

10

Gev

10

JEWEL Parameters

params.job1.dat ->

NEVENT 10000 PTMIN 90. PTMAX -1. ETAMAX 2.5 MEDIUMPARAMS medium.example.dat KEEPRECOILS T SQRTS 2760 SHORTHEPMC T COMPRESS T LOGFILE output/160722154039/job1.log HEPMCFILE output/160722154039/job1.hepmc NJOB 22154039

medium.params.dat ->

TI 0.40 CENTRMIN 0. CENTRMAX 30.

JEWEL $\Delta \phi$ and A_J sanity checks

 Distributions follow expectation if not necessarily mirroring data

