

Open heavy-flavour production in heavy-ion collisions

Elena Bruna (INFN Torino)

4th Heavy-Ion Jet Workshop

25-27 July 2016 Ecole Polytechnique

Heavy Flavours: unique probes

INN

- Produced in initial high-Q² processes \rightarrow calculable with pQCD
- Large mass \rightarrow short formation time \rightarrow experience medium evolution - 1/2m_c (~0.07 fm/c) < QGP formation time (~0.1-1fm/c) << QGP life time (10 fm/c)
- Expected small rate of thermal production in the QGP ($m_{c,b} >> T$)

Collision evolution stages probed by heavy quarks:

Initial stages:

- test pQCD
- probe nPDF

QGP/partonic phase:

- energy loss: radiative vs collisional
- collectivity

Hadronization:

- fragmentation
- recombination

Different collision systems to gain insight in these evolution stages !

Heavy Flavours in small collision systems

ININ

- test for pQCD
- reference for pA and AA
- role of Multi Parton Interactions (MPI)

• p-Pb:

- -reference for cold nuclear matter (CNM) effects
- -initial/final-state effects
 - nPDF, saturation and more effects
 - $(k_T \text{ broadening, energy loss})$
- -role of collision geometry/multiplicity density
- -collective effects in small systems?

→ Experimentally: inclusive cross sections, multiplicity differential measurements and heavy-flavour correlations

Heavy Flavours in Pb-Pb collisions

- **Energy loss** of heavy-quarks in the medium:
 - modifies phase-space distribution of HQ
 - mechanisms: gluon radiation, elastic collisions
 - depends on:
 - Medium density, path-length
 - Colour-charge, Mass

the medium

 $\Delta E_{g} > \Delta E_{u,d} > \Delta E_{c} > \Delta E_{b}$ "dead-cone" effect in radiative energy loss

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Heavy-flavour azimuthal anisotropy

- at low $p_T \rightarrow$ information on the transport properties of the medium, collectivity and thermalization of HQ
- at high $p_{\tau} \rightarrow$ information on path-length dependent energy loss
- Hadronization mechanism
 - role of coalescence of HQ with low- p_{T} light quarks in the medium
 - \rightarrow Experimentally: differential measurements toward a quantitative picture: charm vs beauty R_{AA} and v_2 , correlations and jets, baryons vs mesons

Measurements of Heavy Flavours at RHIC and LHC in A-A (and pp, pA) Semi-leptonic decays Full reconstruction of D meson hadronic decays (charm, beauty), electrons from b K⁺ rec. track $D^0 \rightarrow K^- \pi^+$ e,µ ϑ_{point} D_s⁺ $D^+ \rightarrow K^- \pi^+ \pi^+ ($ $p_{T}(D_{c})$ $D^{*+} \rightarrow D^0 \pi^+$ decay length Primary B. vertex $D_{t}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{-} K^{+} \pi^{+}$ **`**D d₀ π* μ J/ψ Jet b-tagging Displaced J/ ψ (from B decays) Displaced Tracks Full reconstruction of beauty decays: **B** and $\Lambda_{\mathbf{b}}$ Secondary Verte $\Lambda_{\rm h} \rightarrow J/\psi \Lambda$ same technique as for $B^+ \rightarrow J/\psi K^+, J/\psi K \pi$ D mesons based on $B^0 \rightarrow J/\psi K^0$ Primarv displaced vertex Vertex $B_{c}^{0} \rightarrow J/\psi \phi$ topologies pp:ATLAS/CMS,LHCb Jet **pPb** (CMS) : $B \rightarrow J/\psi$ K, π

Heavy-flavour results in pp collisions

Charm in pp: Test for pQCD and reference for pA and AA

Cross sections at both RHIC and LHC energies well described by pQCD predictions. Charm cross-section on the upper side of the FONLL uncertainty band at both RHIC and LHC

Beauty in pp: Test for pQCD and reference for pA and AA

Beauty cross sections at LHC energies well described by pQCD predictions. The central values of **7 TeV** data better agree with FONLL wrt **13 TeV**

pp: HF yields vs event multiplicity

Study the effect of multi-particle interactions on the hard heavy-flavour scale

Increasing trend with multiplicity for D mesons, J/ψ and Y in pp collisions:

- Behaviour related to HQ production process rather than to hadronization mechanism
- MPI are dominating the high-multiplicity events and affecting heavy-flavour production

HF correlations in pp at the LHC

Provide constraints to MC generators about HF production mechanisms

Azimuthal DD correlations

 $C\overline{C}$ events have a clear enhancement at small $\Delta \phi$, consistent with gluon splitting LHCb, JHEP06(2012)141

HF correlations in pp at the LHC

Compatible within uncertainties with expectations from different MC generators and tunes (PYTHIA6, PYTHIA8, POWHEG+PYTHIA) after baseline subtraction

E. Bruna (INFN)

Heavy-flavour results in p-Pb collisions

HF in pA: control experiment

R_{pPb} ~1 for D and B mesons in p-Pb collisions Models with CNM describe the data within the uncertainties

E. Bruna (INFN)

LHC: R_{pPb} ~1 for electrons from c/b in p-Pb collisions

RHIC: R_{dAu} >1 for electrons from heavy-flavours at low p_T in central d+Au. Compatible with radial flow? Peripheral: consistent with binary-scaled pp

HF in pA: RHIC vs LHC

 $a_{\rm pPb}$ prompt

RHIC: R_{dAu} > 1 for electrons from heavy-flavours at low p_{T} in central d+Au. Compatible with radial flow? Peripheral: consistent with binary-scaled pp

LHC: No multiplicity dependent modification of D-meson production relative to pp collisions within uncertainties.

 \rightarrow Smaller effect could be due to harder initial spectrum

HF in pA: different rapidities at LHC

mesons

Forward and backward rapidity at LHC

Pb-going (backward)

Different x regimes explored in different rapidity ranges with HF probes \rightarrow shadowing/saturation relevant at low p_{T} at the LHC

Data described within uncertainties by the models with nPDF and other CNM effects

HF in pA: different rapidities at RHIC

c,b→µ

Forward and backward rapidity at RHIC

Suppression at forward rapidity

Enhancement at backward rapidity

Models based on different initial-state effects fail to reproduce d+Au data at both forward and backward rapidities at RHIC energies

PHENIX, PRL112 (2014) 252301

HF in pA: different rapidities at RHIC vs LHC 🔊

E. Bruna (INFN)

D-h correlations in pp and p-Pb

Compatibility within uncertainties between **pp collisions at** \sqrt{s} = 7 TeV and **p-Pb collisions at** $\sqrt{s_{NN}}$ = 5.02 TeV after baseline subtraction

Near-side yields and widths compatible in data and simulations within uncertainties.

No modifications due to CNM effects in p-Pb seen within uncertainties

ININ

b- and c- jets in p-Pb collisions

High- p_T jets tagged with charm and beauty quarks No significant CNM effects for jet p_T >50 GeV/c

Heavy-flavour results in Pb-Pb collisions

AA: D-meson R_{AA} at LHC

Strong suppression of prompt D-meson yield in central Pb-Pb collisions

- up to a factor of 5 at $p_{T} \sim 10 \text{ GeV/}c$

Hint for less suppression of D_s^+ than non-strange D at low p_T

- expected if recombination plays a role in charm hadronization

AA: D-meson R_{AA} at LHC in Run 2

Strong suppression of D⁰ mesons in Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV \rightarrow ~factor 5 at p_T =10 GeV/c

Similar suppression as in in Pb-Pb at $\sqrt{s_{NN}}=2.76$ TeV At high $p_T > 10$ GeV: D⁰ R_{AA} increases as a function of D⁰ p_T

AA: comparison to RHIC

Similar suppression in central A-A collisions at high p_T Differences at low p_T : radial flow? Shadowing? Recombination? Crucial to go to $p_T \sim 0$ at the LHC

Leptons from HF at RHIC

c,b→electrons

Different suppression trend at $\sqrt{s_{NN}}$ =62 and 200 GeV.

Different effects at two energies: interplay between initial-state k_t-broadening, final-state flow and energy loss

Note: 62 GeV pp reference comes from ISR. More data at 62 GeV

Leptons from HF at RHIC

c,b→electrons

Charm and beauty separation

From 2011 Au-Au data \rightarrow Expected improvement from 2014 run with x10 statistics

Leptons from HF at LHC

ALICE, PRL 109 (2012) 112301 (HF decay muons)

ATLAS-CONF-2015-053

Similar suppression of electrons and muons from heavy-flavour hadron decays at the LHC.

Electrons from beauty-hadron decays in Pb-Pb collisions. Hint for suppression for $p_{T}>3$ GeV/c

R_{AA}: **D** mesons and charged hadrons

INN

Mass/colour dependence of energy loss?

 $R_{AA}(D) \sim R_{AA}(\pi, h^{\pm})$ in different AA collision energies What about ΔE(g)>ΔE(uds)>ΔE(c) $\stackrel{?}{\rightarrow} R_{AA}(D)>R_{AA}(\pi, h^{\pm})$

→Different quark spectra → $R_{AA}(h)$ affected by fragmentation, $R_{AA}(D) \sim R_{AA}(c)$ because of harder HQ fragmentation M.Djordjevic, PRL 112, 042302 (2014)

R_{AA} : D mesons and non-prompt J/ ψ

Mass dependence of energy loss?

similar kinematics for D and B mesons (**p_T>~10 GeV/c**) different y ranges for D and non-prompt J/ ψ

Indication of a difference between charm and beauty suppression in central collisions

M.Djordjevic, PRL 112, 042302 (2014)

pQCD in-medium energy loss model based on mass dependent energy loss in agreement with data

Beauty jets in Pb-Pb collisions

Quark-jets tagged.

B-jet suppression is described by model with strong jet-medium coupling, consistent with inclusive jet suppression.

Quark mass effect negligible at high jet p_{T} .

- **RHIC**: $D^0 v_2 > 0$ for $p_T > 2$ GeV/c (0-80%)
- tends to be below light-hadron v_2 at low p_T

LHC: D-meson $v_2 > 0$ in $2 < p_T < 6$ GeV/c (with 5.7 σ) (30-50%)

compatible with v₂ of charged particles

 \rightarrow more statistics and low-p_T measurements needed to quantify HQ thermalization at RHIC and LHC

HF lepton azimuthal anisotropy

Positive v_2 for e/µ from heavy-flavour decays at LHC

HF lepton azimuthal anisotropy

R_{AA} and v_2 : constraints to models

- **BAMPS** (Boltzman equation with collisional energy loss –and radiative- in expanding QGP): Fochler et al., J. Phys. G38 (2011) 124152, PRC 84 (2011) 024908
- Cao, Quin, Bass(Langevin with coll and rad term and recombination+hydro) arXiv:1605.06447v1
- Djordjevic (energy loss due to both radiative and collisional
- processes in a finite size dynamical QCD medium) Phys. Rev. C 92 (2015) 024918
- MC@sHQ+EPOS (coll and rad e.loss in expanding medium based on EPOS model): Aichelin et al., Phys. Rev. C79 (2009) 044906, J. Phys. G37 (2010) 094019
- **PHSD** (Parton-Hadron-String Dynamics transp0rt approach, coalescence): E. Bratkovskaya et al., PRC 93 (2016) 034906
- **POWLANG** (HQ transport with Langevin equation with collisional energy los and, recombination, viscous hydrodynamic expansion): Alberico et al., Eur.Phys.J C71 (2011) 1666
- UrQMD (Langevin equation in UrQMD): T. Lang et al, arXiv:1211.6912 [hep-ph];T. Lang et al., arXiv:1212.0696 [hep-ph].
- TAMU (HQ transport with resonant scattering and coalescence+hydro): Rapp, He et al., Phys. Rev. C 86 (2012) 014903
- Vitev (in-medium formation and dissociation of D and B, ideal fluid with Bjorken expansion):PLB 639 (2006) 38, PRC 80.5 (2009) 054902
- WHDG (pQCD calculation with radiative and collisional energy loss): Horowitz et al., JPhys G38 (2011) 124114

R_{AA} and v_2 : constraints to models

 R_{AA} and v_2 results start to provide constraints to models.

Simultaneous description of heavy-flavour R_{AA} and v_2 still challenging.

Theoretical models (i.e. TAMU) can reproduce the general R_{AA} trends at both energies in the low p_T range common to both

Current Status: HF at RHIC and LHC

Heavy flavours are unique probes to characterize medium properties at RHIC an LHC energies.

Conclusions

- Large array of heavy flavour measurements at RHIC and LHC
 - different energies and collision systems
 - p(d)-A is the system to study CNM effects, but also different x regimes and possible collective effects on heavy flavours
- Open charm/beauty strongly affected by the medium
 - from RHIC to LHC: similar suppression at high p_T , enhancement at low p_T at RHIC
 - mass dependence of suppression trends in agreement with models
 - **positive v**₂ suggests collective motion for c quarks at low p_T at RHIC and LHC
- Next: more precise measurements to sharpen the conclusions
 - RHIC, LHC: new detectors and future upgrades
 - Smaller uncertainties, new differential measurements will help to further constrain theory (and add information on path-length dependence of energy loss, energy loss mechanisms, thermalization, hadronization, ...)

U+U at **RHIC**

High energy pp and AA colliders probe successively smaller fractional momenta, x, of q, \bar{q} and g for perturbative probes such as dijets, lepton pairs, gauge bosons or quarkonium produced at scale Q

$$x_1 = \frac{Q}{\sqrt{s_{NN}}} \exp(y) \quad \text{"projectile}$$
$$x_2 = \frac{Q}{\sqrt{s_{NN}}} \exp(-y) \quad \text{"target"}$$

At the LHC, $|y| \le 8.6 - 9.6$, depending on $\sqrt{s_{NN}}$

E. Bruna (INFN)

K. J. Eskola, H. Paukkunen and C. A. Salgado, JHEP 0904 (2009) 065 R. Sharma, I. Vitev et al., PRC 80 (2009) 054902 Z.B. Kang et al., PLB 740 (2015) 23 Phys. Lett. B 754 (2016) 81

Different x regimes explored in different rapidity ranges with HF probes \rightarrow shadowing/saturation relevant at low p_T at the LHC

Data described within uncertainties by the models with CNM effects

R_{AA}: **D** mesons and charged hadrons

System size dependence of R_{AA} at RHIC

From **d+Au** to **peripheral Cu+Cu**: enhancement effects dominating

From Cu+Cu to central Au+Au: suppression dominating

U+U: could have 20% higher energy density than Au+Au similar D⁰ suppression as for Au+Au, extends the trend

System size dependence of R_{AA} at RHIC U

CENTRAL d+Au ~ PERIPHERAL Cu+Cu

CENTRAL Cu+Cu ~ MID Au+Au

Charm collective motion at RHIC

Charm v₂ at low energy (62 GeV): is flowing? is recombination with light quarks?

- Data favour model including charm quark diffusion in the medium
- Systematically below light-hadron v₂

R_{AA} and v_2 : constraints to models

 R_{AA} and v_2 results start to provide constraints to models.

- Simultaneous description of heavy-flavour R_{AA} and v_2 still challenging.
- More precise measurements needed to further constrain models

BAMPS: Fochler et al., J. Phys. G38 (2011) 124152
POWLANG: Alberico et al., Eur.Phys.J C71 (2011) 1666
UrQMD: T. Lang et al, arXiv:1211.6912 [hep-ph]; T. Lang et al., arXiv:1212.0696 [hep-ph].
TAMU: Rapp, He et al., Phys. Rev. C 86 (2012) 014903
WHDG: Horowitz et al., JPhys G38 (2011) 124114
Aichelin et al.:Phys. Rev. C79 (2009) 044906 J. Phys. G37 (2010) 094019

HF electron-muon correlations at RHIC 🔊

Suppression in d+Au:

cold nuclear matter modification of cc pairs (low-x gluons dominating the away side and suffering more shadowing? initial/final state effects ?)

PHENIX, PRC (2014) 034915

mid-rapidity electrons (from HF) – forward-rapidity muons (from HF)

peak at π is suppressed in **d+Au** compared to **pp**

