4th Heavy Ion Jet Workshop, École Polytechnique, 25-27 July 2016

Future Heavy Flavour Measurements: LHC Upgrades and Outlook to FCC

Andrea Dainese (INFN Padova, Italy)

Part I:

- Future HI programme at LHC
- Detector upgrades
- Projected performance for HF measurements

Part II:

- Introduction to the FCC Study
- Example of novel QGP observables at FCC: thermal charm and boosted tops

Timeline of future HI running at the LHC

- > Pb-Pb: few/nb (0.7/nb in 2015), at $\sqrt{s_{NN}}$ = 5 TeV
- p-Pb at 5 and 8 TeV (increased luminosity)

pp reference at Pb-Pb energy (5 TeV)

LS2:

- LHC injector upgrades; bunch spacing (likely) reduced to 25 ns; Pb-Pb interaction rate may exceed 50 kHz (now <10 kHz)</p>
- Experiments upgrades (LS2 and LS3)
- Runs 3+4:
 - Experiments request for Pb-Pb: >10/nb (ALICE: 10/nb at 0.5T + 3/nb at 0.2T)
 - In line with latest projections by the machine group

Part I:

- Detector upgrades
- Projected performance for HF measurements
 Part II:
- Introduction to the FCC Study
- Example of novel QGP observables at FCC: thermal charm and boosted tops

ALICE Upgrade: (selected) physics questions & observables

- **1.** Characterise mechanisms of quark-medium interaction \rightarrow Heavy flavour dynamics and hadronisation at low p_T
- 2. Charmonia regeneration as tool to study deconfinement
 - \rightarrow Charmonia down to zero p_{T}
- 3. Chiral symmetry and QGP temperature at LHC
 - → Vector mesons and virtual thermal photons via dileptons

http://cdsweb.cern.ch/record/1475243 http://cdsweb.cern.ch/record/1592659

HI Jet Workshop, 26.07.16

Andrea Dainese

ALICE Upgrade: Heavy Flavour requirements

TOF (p/K/ π id)

TPC (tracking, $p/K/\pi$ id)

ITS (tracking

Κ

& vertexing)

Currently, in Pb-Pb: $D^0 \rightarrow K\pi$ $D^+ \rightarrow K\pi\pi$ $D^* \rightarrow D^0 \pi$ $D_s \rightarrow KK\pi$ (limited) $HF \rightarrow e/\mu + X$ $B \rightarrow e / J/\psi + X$ (limited) **Goals for upgrade:** Precision! $p_{\tau} \rightarrow 0!$ $B \rightarrow D^{0+}X$ $B \rightarrow J/\psi + X$ $B \rightarrow e/\mu + X$ $\Lambda_c \rightarrow pK\pi$ $\Lambda_{\rm h} \rightarrow \Lambda_{\rm c} \pi$

General features:

Decay at few 100 μm from interaction point

Large combinatorial background → low signal/background → no dedicated trigger

Requirements:

- Vertexing resolution
 - Preserve particle identification
 - Large statistics (no dedicated trigger)

H Jet Workshop, 26.07.16

ALICE Upgrade Strategy

Main observables:

- Low-p_T heavy flavour
- Low-p_T charmonia
- Very) low-p_T and low-mass di-leptons
- Mostly "untriggerable" because of extremely low S/B
- Trigger approach: write all interactions at 50 kHz in Pb-Pb (currently 1 kHz)

~1 TB/s

O² facility at ALICE site: integrated online-offline system for calibration, reconstruction and data compression

~90 GB/s

→ Run3-4: increase of MB sample x100 wrt Run 2, 10/nb ~ 100 billion MB events

HI Jet Workshop, 26.07.16

Andrea Dainese

INFN

ALICE Detector Upgrade

New Inner Tracking System (ITS)

Improved resolution, less material, faster readout

ALICE Detector Upgrade

- Improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - > HF vertices also at forward rapidity

N F N

ALICE Detector Upgrade C

New Inner Tracking System (ITS)

Improved resolution, less material, faster readout

New Forward Muon Tracker (MFT)

- HF vertices also at forward rapidity
- Upgraded read-out for TPC, TOF, TRD, MUON, ZDC, EMCal, PHOS, new trigger detector (FIT), integrated Online-Offline system (O²)

Record Pb-Pb data at 50 kHz

New ALICE all-pixel trackers: ITS and MFT \mathcal{C}^{μ}

HI Jet Workshop, 26.07.16

Both trackers fully based on

Andrea Dainese

ITS: pointing resolution x3 better in transverse plane (x6 along beam) MFT: pointing resolution better than 100 μ m for $p_T > 1$ GeV/*c*

HI Jet Workshop, 26.07.16

Andrea Dainese

12

| N F N

Focus on ATLAS and CMS

Main observables:

- > Differential studies of jets at very high p_T
- D and B mesons, HF-jets
- Differential studies of quarkonium states
- Exploit detector specificities (strengthened with the upgrades):
 - muon ID
 - precise trackers
 - calorimetry

Mostly based on muon, jet, displaced track triggers

Trigger/DAQ approach: strong event rate reduction 50 kHz L1 ~ few kHz HLT ~ 100 Hz

→ Run 3-4: 10/nb → increase of sample x10 wrt Run 2

ATLAS and CMS: upgrades most relevant to HI

ATLAS

- Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

CMS

- Upgrade of trigger and DAQ, L1 calorimeter trigger (LS1): enables L1 rejection at 95%, e.g. (after LS2) from 50 kHz to <3 kHz (HLT input)</p>
- New pixel tracker (YETS16-17), then new tracker (LS3): tracking and btagging
- Extension of forward muon system (LS3): muon acceptance
- Upgrade forward calorimeter (LS3): forward jets in HI

New CMS pixel tracker

- To be installed during 2016-17 year-end tech. stop
- Reduced material budget
- Improved IP resolution

- Will have strong impact, also in Pb-Pb, on:
 - > Extension of η acceptance
 - Non-prompt J/ψ
 - b-tagged jets
 - Full reconstruction of D and B meson decays

Focus on LHCb

- Readout upgrade: up 40 MHz (pp)
 - \rightarrow exploit full delivered HI rate

Part I:

- ♦ Future HI programme at LHC
- Detector upgrades
- Projected performance for HF measurements
 Part II:
- Introduction to the FCC Study
- Example of novel QGP observables at FCC: thermal charm and boosted tops

Heavy flavour R_{AA} at LHC: present status \mathcal{C}^{FN}

D R_{AA} consistent with pions and charged hadrons within uncertainties at 2.76 (ALICE and CMS) and 5.02 TeV (CMS)

Need to improve precision and accuracy to conclude on D vs π and assess colour-charge dependence of energy loss

Andrea Dainese

Heavy flavour R_{AA} at LHC: present status U^{FR} First indication of mass dependence of energy loss: R_{AA}^{B} (CMS) > R_{AA}^{D} (ALICE, CMS)

Limited to high p_T (~10 GeV) and large uncertainties in centrality dependence

Heavy flavour R_{AA} : CMS Run-2 projection \mathcal{C}^{MFN}

HI Jet Workshop, 26.07.16

20

New studies on B reconstruction using exclusive decays:

$B^+ \rightarrow D^0 (\rightarrow K\pi)\pi^+$

HI Jet Workshop, 26.07.16

Andrea Dainese

New studies on B reconstruction using exclusive decays:

B⁺→J/ψ(→ee)K⁺

HI Jet Workshop, 26.07.16

Beauty with ALICE Upgrade: summary \mathcal{C}^{F}

ALICE, CERN-LHCC-2013-024, CERN-LHCC-2015-001

HI Jet Workshop, 26.07.16

Andrea Dainese

Heavy flavour R_{AA}: ALICE Upgrade

Upgrade: Charm and beauty $R_{\Delta\Delta}$ down Present data: Charm and to $p_T \sim 0$ using D⁰ and B-decay J/ ψ beauty R_{AA} at $p_{T} \sim 10$ GeV AA 4 4 4 4 Ц ____ 1.8-ALICE Upgrade $Pb-Pb, \sqrt{s_{NN}} = 5.5 \text{ TeV}$ ·Pb, *∖ s*_{NN} = 2.76 TeV $L_{int} = 10 \text{ nb}^{-1}$, centrality 0-10% π^{\pm} (ALICE) 8< p_{\pm} <16 GeV/c, |y|<0.8 1.6 1.2 D mesons (ALICE) $8 < p_{-} < 16 \text{ GeV}/c, |y| < 0.5$ Non-prompt J/ψ (CMS Preliminary) 6.5<p_<30 GeV/c, |y|<1.2 CMS-PAS-HIN-12-014 1.4 $D^0 \rightarrow K^{-}\pi^+$ (empty) filled boxes: (un)correlated syst. uncert. Non-prompt $J/\psi \rightarrow e^+e^-$ (*) 50-100% for non-prompt J/w 1.2 (stat. only 0.8 23/09/2013 0.6 0.8 50-80% 0.6 0.4 0.4 40-50% 0.2 30-40% 20-30% 10-20% 0.2 π^{\pm} shifted by +10 in $\langle N_{\text{part}} \rangle$ 0-10% 350 400 50 100 150 200 250 300 $\langle N_{\text{part}'}$ 25 30 p₊ (GeV/c) 15 25 5 10 20 ALI-DER-93725

ALI-PERF-59950

ALICE, CERN-LHCC-2013-024

I N F N

First measurement of b-jet R_{AA} in heavy ion collisions (0.15/nb)

CMS projections for 10/nb (Run3+Run4)

- > 140k b-jets with p_T > 120 GeV/c
- \succ High-precision measurement of bb Di-jet momentum imbalance

CMS, PRL 113 (2014) 13, 132301

CMS, PAS-FTR-13-025

HI Jet Workshop, 26.07.16

NFN

Heavy Flavour Flow

- Do HQs take part in the "collectivity"? \rightarrow look for radial and elliptic flow
- Information on QGP transport coefficient, role of E loss mechanisms, and hadronization mechanisms
 - > Due to their large mass, HQs need frequent interactions with large coupling to build flow (a clear expectation: $v_2^{b} < v_2^{c}$) \iff
 - > Collisional energy loss gives larger v_2 than radiative \iff
 - > Coalescence increases radial and elliptic flow at intermediate $p_T \leftrightarrow$

HI Jet Workshop, 26.07.16

Andrea Dainese

Heavy flavour v_2 : current status

- Charm hadrons have $v_2 > 0$, comparable to light hadrons
- HF-decay leptons (inclusive) also have v₂>0
- Heavy quark collective flow? Role of hadronization?

Still quite qualitative, sizeable uncertainties for charm and no separate measurement for beauty

Heavy flavour v₂: ALICE Upgrade

Present data on charm v₂

Upgrade: Charm and beauty v_2 down to $p_T \sim 0$ using prompt and B-decay D⁰

ALICE, CERN-LHCC-2013-024

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

Andrea Dainese

I N F N

Assessing energy loss mechanisms with HF correlations

 $\Delta \phi$

Nahrgang et al.

Monte Sainte Odile, 25.05.14

Andrea Dainese

29

4

5

6

In-medium heavy flavour hadronization? \mathcal{C}^{μ}

- From LHC Run-1 data, some indications that charm quarks could recombine in the QGP:
 - > J/ ψ R_{AA} (and v₂) at low p_T
 - D meson v₂ better described by models with recombination
 - > $D_s R_{AA}$ (central value) larger than D R_{AA} ?

ALICE, JHEP1603 (2016) 082

In-medium heavy flavour hadronization? \mathcal{C}^{μ}

- From LHC Run-1 data, some indications that charm quarks could recombine in the QGP:
- Precise measurements of HF mesons (non-strange and strange) and baryons
- \rightarrow Precise measurements of their v₂ (+ that of J/ ψ)

ALICE, CERN-LHCC-2013-024

HF ''hadrochemistry'' with ALICE Upgrade \mathcal{C}^{PP}

- ∧_c→pKπ and D_s→KKπ (cτ=60 and 150 µm) with good precision for p_T>2 GeV/c
- $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \pi$ ($c \tau$ =450 µm) accessible for p_T>7 GeV/c

ALICE, CERN-LHCC-2013-024

... and the heaviest of all: top in Pb-Pb

- Estimate for observation channel in CMS (CMS PAS-FTR-2013-025)
- \rightarrow ~500 events for 10 nb⁻¹ Pb-Pb 5.5 TeV
- Most top quarks decay <u>before the QGP formation</u> (the b quarks will cross the medium and broaden/shift the reconstructed top mass)
- But boosted top quarks decay in the QGP, which brings me to the FCC part of the talk

Part I:

- ◆ Future HI programme at LHC
- Detector upgrades
- Projected performance for HF measurements

Part II:

- Introduction to the FCC Study
- Example of novel QGP observables at FCC: thermal charm and boosted tops

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- *e*⁺*e*⁻ collider (*FCC-ee*) as potential intermediate step
- *p-e* (*FCC-he*) option
- 80-100 km infrastructure in Geneva area

HI Organization and Report 2016

- Ions at FCC-hh Working Group:
 - Coord: A.D., S. Masciocchi, C. Salgado, U. Wiedemann
 - Sub-group of "FCC-h Physics, Experiments, Detectors"
 - Participation of CERN Beams dep. (J. Jowett, M. Schaumann)
 - Contact with HI theory group of CEPC-SppC
 - Twiki https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons
- 6 workshops/meetings 2013-15
 - <u>https://indico.cern.ch/event/331669/</u> and links therein
- "Report2016" is online: <u>arXiv:1605.01389</u>
 - > 40 pages, about 50 authors
 - Section editors: N. Armesto, A. Dainese, D. d'Enterria, J. Jowett, J.P.Lansberg, G. Milhano, C. Salgado, M. Schaumann, M. van Leeuwen, U. Wiedemann

Energy and luminosity

Centre-of-mass energy per nucleon-nucleon collision:

Projected L_{int} /month: 33/nb for Pb-Pb and 8/pb for p-Pb
 e.g. in three 1-month Pb-Pb runs: 100/nb ~ 10x full LHC programme

M.Schaumann, J.Jowett, in arXiv:1605.01389

Extrapolation to 39 TeV: increase wrt LHC 5.5 TeV

$dN_{ch}/d\eta \times 1.8$ dE_τ/dη (& ε) x2.2 Volume x1.8 $(dN_{ch}/d\eta)/(0.5\langle N_{part}\rangle)$ Phys. Lett. B 696 (2011) 328 (values scaled) 6000 (fm³) PbPb(0-5 %) ALICE △ pp NSD ALICE E895 2.7, 3.3, 3.8, 4.3 GeV ۸ PbPb(0-5 %) NA50 o pp NSD CMS OPI, 0-1% AuAi NA49 8.7, 12.5, 17.3 GeV Δ AuAu(0-5 %) BRAHMS 🕸 pp NSD CDF $\left(2\pi ight)^{3/2}R_{out}R_{side}R_{long}$ 5000)/2) (GeV) ∝ **s**^{0.15} E802, 0-5% AuAu CERES 17.3 GeV AuAu(0-5 %) PHENIX ◊ pp NSD UA5 * STAR 62.4, 200 GeV A49, 0-7% PbPb AuAu(0-5 %) STAR * pp NSD UA1 PHOBOS 62.4, 200 GeV 4000F AuAu(0-6 %) PHOBOS × pp NSD STAR NA98, 0-5% PbPb ALICE 2760 GeV PHENIX. 0-5% AuAu AΑ (dE_T/dn)/({ N_{part} 3000 CMS. 0-5% PbPb pp(pp) RHIC parametrization ∝ **s**^{0.11} 2000 0.46 s^{0.2}_{NNI} √s_{NN} ≥ 8.7 GeV 1000F 0 500 1000 1500 2000 10^{2} 10³ 10³ 10 10² $\langle dN_{_{ch}}/d\eta \rangle$ 1 $\sqrt{s_{_{ m NN}}}$ (GeV) $\sqrt{{ m s_{NN}}}$ (GeV)

Quantity	Pb-Pb 2.76 TeV	Pb-Pb 5.5 TeV	Pb–Pb 39 TeV
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	3600
Total $N_{ m ch}$	17000	23000	50000
$\mathrm{d}E_\mathrm{T}/\mathrm{d}\eta$ at $\eta=0$	1.8–2.0 TeV	2.3–2.6 TeV	5.2–5.8 TeV
Homogeneity volume	5000 fm^3	6200 fm^3	11000 fm^3
Decoupling time	10 fm/c	11 fm/c	13 fm/c
ε at $\tau=1~{\rm fm/}c$	12–13 GeV/fm ³	16–17 GeV/fm ³	$35-40 \text{ GeV/fm}^3$

Part I:

- ◆ Future HI programme at LHC
- Detector upgrades
- Projected performance for HF measurements

Part II:

- Introduction to the FCC Study
- Example of novel QGP observables at FCC: thermal charm and boosted tops

Higher QGP temperature

◆ Larger c.m.s. energy \rightarrow larger fireball temperature

From hydrodynamic simulation:

900 MeV at τ = 0.2 fm/c
650 MeV at τ = 0.5 fm/c

Note that a QGP with temperature T ~ 1 GeV has energy density $\varepsilon \sim 2 \text{ TeV}/\text{fm}^3$!

C.M. Ko, Y. Liu, arXiv:1604.01207

Large "thermal" charm production?

Expect abundant secondary production of $c\overline{c}$ pairs in the medium from $gg \rightarrow c\overline{c}, q\overline{q} \rightarrow c\overline{c} + \text{NLO} \dots$

- Up to 50-100% "enhancement" wrt primary charm
- Should be visible above (shadowing-corrected) binary scaling
- Sensitive to QGP properties: T vs τ , and τ_0

K. Zhou et al., arXiv:1602.01667

Top production at FCC energy

 The increased energy and luminosity at FCC would make of t-tbar events a very abundant probe

- Top cross section increases by x80 from 5.5 TeV to 39 TeV
- Kinematic simulation study: $3 \times 10^5 t\bar{t} \rightarrow b\bar{b} \ell\ell \nu\nu$ per run (33/nb)
- Top p_T distribution up to ~1.2 TeV/c

D. d'Enterria, et al. Phys. Lett. B746 (2015) 64-72, arXiv:1501.05879 [hep-ph]

An interesting physics case for top: boosted color singlets in the QGP

• Boosted (i.e. high p_T) top events: $t\overline{t} \rightarrow b\overline{b} + q\overline{q} + \ell + v$

This $q\overline{q}$ is produced as a color singlet and it "sees" the QGP with a time delay given by the boost of the t and of the W

The rest of the final state $2 \ b - jets + \ell + E_{T}$ is used to tag the event topology

 Boosted-top events can therefore be used to address two novel studies in the sector of parton energy loss:

- 1. Time-evolution of QGP opacity, because of the boost
- 2. Role of color coherence in parton energy loss, because the pair is initially a color singlet

Will be discussed tomorrow by L.Apolinario

An interesting physics case for top: boosted color singlets in the QGP

- Energy loss of the $q\overline{q}$ pair results in a shift of the W mass reconstructed from the $q\overline{q}$ jet(s)
- Observables:
 - The shift of the W mass discriminates scenarios on the role of color coherence (small shift in case coherence plays a role)
 - The shift vs top p_T probes the time-evolution of the QGP density

Kinematic simulation study with Pb-Pb 39 TeV (100/nb)

More on this and updated results tomorrow by L.Apolinario

Apolinario, Milhano, Salam, Salgado, in arXiv:1605.01389

Summary

LHC 2020s: precision in HF sector!

FCC 2040s (?): novel opportunities with HF!

EXTRA SLIDES

HI Jet Workshop, 26.07.16

Andrea Dainese

Available Documents

- ALICE Upgrade LOI: CERN-LHCC-2012-012
 - Addendum (Muon Forward Tracker): CERN-LHCC-2013-014
- ◆ ALICE inner tracker upgrade TDR: CERN-LHCC-2013-024
- CMS HI HL-LHC projections: CMS-PAS-FTR-13-025
- Presentations at the Heavy Ion Town Meeting (June 2012):

http://indico.cern.ch/event/Hltownmeeting

- Inputs by ALICE, ATLAS, CMS to the ESPG meeting Cracow (Sep 2012)
 - http://indico.cern.ch/confld=182232

HI community presentation (H. Appelshaeueser) <u>http://indico.cern.ch/getFile.py/access?</u> <u>contribId=16&sessionId=2&resId=0&materiaIId=slides&confId=1822</u> <u>32</u>

An interesting physics case for top: boosted color singlets in the QGP

1) Testing the time evolution of the QGP density

Estimate of the "start time" of energy loss: reaches 2-3 fm/c for top $p_T \sim 0.5$ -1 TeV/c

An interesting physics case for top: boosted color singlets in the QGP

2) Testing the role of color coherence

q-qbar with small opening angle; seen as color-singlet by the medium, <u>no interaction expected</u>

Medium induces decoherence, opening angle increases \rightarrow <u>energy</u> <u>loss of color-octet's in the medium</u>

Armesto, Casalderrey, Iancu, Ma, Mehtar-Tani, Salgado, Tywoniuk 2010-2014

Heavy flavour: requirements

TOF (p/K/π id)

TPC (tracking, p/K/π id)

ITS (tracking & vertexing)

Κ

Currently, in Pb-Pb: $D^0 \rightarrow K\pi$ $D^+ \rightarrow K\pi\pi$ $D^* \rightarrow D^0\pi$ $D_s \rightarrow KK\pi$ Goals for upgrade: $B \rightarrow D^0+X$ $B \rightarrow J/\psi+X$ $B \rightarrow J/\psi+X$ $B \rightarrow 0^0\pi$ $B \rightarrow e/\mu +X$ $\Lambda_c \rightarrow pK\pi$ $\Lambda_b \rightarrow \Lambda_c\pi$

General features:

Decay at few 100 μm from interaction point

Large combinatorial background → low signal/background → no dedicated trigger

Requirements:
Vertexing resolution
Preserve particle identification
Large statistics (no dedicated trigger)

HI Jet Workshop, 26.07.16

Charmonium: requirements

<u>et VVorkshop, 26.0</u>

Andrea Dainese

General features:

B decay few 100 μm from interaction point

Large combinatorial background in ee channel \rightarrow low signal/background → no dedicated trigger

