Boosted objects in heavyion physics: a powerful probe of QGP

Guilherme Milhano, Carlos Salgado and Gavin Salam (CENTRA-IST/LIP, USC, CERN)

July 2016

4th Heavy Ion Jet Workshop, Ecole Polytechnique, Paris

HIC Probes: Road so far...

- What we measured so far? What properties can we assess?
 - Jet R_{AA}, Jet energy loss (dijets, Z/Jet, photon/Jet), Missing p_T, ...
 - Average behaviours of in-medium showering, possible path-length dependence, amount of backreaction (?)...
 - Intra-Jet observables (Jet Shapes, Splitting Functions - Marta's Talk, ...)
 - Intrinsic properties of QCD in the presence of hot and dense medium (Yacine's Talk)

HIC Probes: Road so far...

- What we measured so far? What properties can we assess?
 - Jet R_{AA}, Jet energy loss (dijets, Z/Jet, photon/Jet), Missing p_T, ...
 - Average behaviours of in-medium showering, possible path-length dependence, amount of backreaction (?)...
 - Intra-Jet observables (Jet Shapes, Splitting Functions - Marta's Talk, ...)
 - Intrinsic properties of QCD in the presence of hot and dense medium (Yacine's Talk)

All of them are the integrated result over the whole medium evolution...

QGP Time Evolution

- Is it possible to assess different time intervals of the medium evolution?
 - Using sources of QCD particles that are delayed in time:
 - t + tbar → b + bbar + W⁺ + W⁻→ q +
 qbar + nu + mu
 - Hadronic W boson: probe of the medium
 - Leptonic W boson: tagging
 - Top lifetime at rest: ~0.15 fm/c
 - ♦ W boson lifetime at rest: ~0.10 fm/c

QGP Time Evolution

LHC (5.5 TeV) and FCC (39 TeV) centre-of-mass energies large enough to probe different timescales as a function of the probe p_T :

Decay

600

• assume 50% eniciency for two b-tags

assume no background Jet Guenching assume about 50% of cross section for 10% centrality

Moreover, Webpson hadronic decay is the natural setup to study of 5 fm/c coherence effects: over that time.

• CMS event display http://media4.s-nbcnews.com/j/ _new/101130-cern-RhoPhi-hugesalereideneizenzigeneidene

• Hard scale:

• assume 30% eniciency for two p-tags

assume no background Jet Guenching assume about 50% of cross section for 10% centrality

+ Moreover, Weboson hadronic decay is the natural setup to study of 5 fm/c coherence effects: over that time.

Available Time Scales

Total delay time:

Boosted top lifetime + Boosted W lifetime + Decoherence Time

Available Time Scales

Total delay time:

Boosted top lifetime + Boosted W lifetime + Decoherence Time

Simple analysis to make a proof of principle

Simulation Parameters

POWHEG (hard event) + PYTHIA 8 (parton shower)

LHC - HL

- 5.5 TeV/nucleon
- L_{int} = 10 nb⁻¹
- + A = 208 (Pb)
- 0-10% centrality class
 (~42% of ttbar events)

FCC

- 39 TeV/nucleon
- + $L_{int} = 30 \text{ nb}^{-1}$
- + A = 208 (Pb)
- 0-10% centrality class
 (~42% of ttbar events)

No HI background. No detector effects.

- Event with at least:
 - 1 (isolated) muon, p_T > 25 GeV, |η| < 2.5.
 - 2 b jets (assumed 70% efficiency)
 - >= 2 non-b jets

- Event with at least:
 - 1 (isolated) muon, p_T > 25 GeV, |η| < 2.5.
 - 2 b jets (assumed 70% efficiency)
 - >= 2 non-b jets

- Event with at least:
 - 1 (isolated) muon, p_T > 25 GeV, |η| < 2.5.
 - 2 b jets (assumed 70% efficiency)
 - >= 2 non-b jets

- Event with at least:
 - 1 (isolated) muon, p_T > 25 GeV, |η| < 2.5.
 - 2 b jets (assumed 70% efficiency)
 - >= 2 non-b jets

- Event with at least:
 - 1 (isolated) muon, p_T > 25 GeV, |η| < 2.5.
 - 2 b jets (assumed 70% efficiency)
 - >= 2 non-b jets

- Anti- k_T jets with R = 0.3, p_T > 30 GeV, $|\eta| < 2.5$.
 - Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (30GeV)²

- Anti- k_T jets with R = 0.3, p_T > 30 GeV, $|\eta| < 2.5$.
 - Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (30GeV)²

- Anti- k_T jets with R = 0.3, p_T > 30 GeV, $|\eta|$ < 2.5.
 - Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (30GeV)²
 top-decay-product merging prob (R=0.3)

- Anti- k_T jets with R = 0.3, p_T > 30 GeV, $|\eta| < 2.5$.
 - Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (30GeV)²
 top-decay-product merging prob (R=0.3)

Reclusters with larger R and find sub-jets with p_{T,rel} > √(d_{cut})

- Anti- k_T jets with R = 0.3, p_T > 30 GeV, $|\eta|$ < 2.5.
 - Recluster with k_T algorithm, R = 1.0 and decluster with dcut = (30GeV)²
 top-decay-product merging prob (R=0.3) at fcc39 PbPb

- W jets are taken to be the 2 highest- p_T non-b jets.
- "Muonic" top is reconstructed assuming b-jet closest to muon (ATLAS 1502.05923).

- W jets are taken to be the 2 highest- p_T non-b jets.
- "Muonic" top is reconstructed assuming b-jet closest to muon (ATLAS 1502.05923).

Top reconstructed with the wrong b-jet

- W jets are taken to be the 2 highest- p_T non-b jets.
- "Muonic" top is reconstructed assuming b-jet closest to muon (ATLAS 1502.05923).

Top reconstructed with the right b-jet

Jet Quenching Model

Very simplistic picture of jet quenching:

- Z + Jet: Delta p_T in [5-10%] (low p_T) to [10-15%] (high p_T)
- Our attempt: 10% of energy loss to all colourful partons

CMS-PAS-HIN-15-013 (Average momentum imbalance Z + Jet)

Cross-section

Total cross-sections compatible with NLO CT14 calculations:

 $\sigma_{ttbar \rightarrow qqbar + \mu v} \sim 10 \text{ pb} (LHC) \text{ and } 1 \text{ nb} (FCC)$

Cross-section

Total cross-sections compatible with NLO CT14 calculations:

 $\sigma_{ttbar \rightarrow qqbar + \mu v} \sim 10 \text{ pb} (LHC) \text{ and } 1 \text{ nb} (FCC)$

Reconstructed Top Mass

Reconstructed Top Mass

Reconstructed W Mass

Reconstructed W Mass

Jet Mass with pr

Statistical significance from a fit using a Gaussian + offset

 σ/\sqrt{N} , with N = N_{evts} under the gaussian

W Mass

Possible to distinguish quenched from unquenched jet masses

Jet Mass with pr

Statistical significance from a fit using a Gaussian + offset

Jet coherence

- To study jet coherence we applied 2 simple models:
 - "antenna": energy loss applied to all colourful partons <u>except</u> the decay products of the hadronic W boson
 - "leading qqbar": energy loss applied to all colourful partons <u>except</u> the leading qqbar from the decay of the hadronic W boson

Absolute value of jet mass can give information on the "degree" of coherence of the system

Jet coherence

- To study jet coherence we applied 2 simple models:
 - "antenna": energy loss applied to all colourful partons <u>except</u> the decay products of the hadronic W boson
 - "leading qqbar": energy loss applied to all colourful partons <u>except</u> the leading qqbar from the decay of the hadronic W boson

Absolute value of jet mass can give information on the "degree" of coherence of the system Amount of quenching can be assessed from the jet mass and/ or comparison with leptonic channel Amount of quenching can be assessed from the jet mass and/ or comparison with leptonic channel

Possible to distinguish:

Quenching scenarios (amount of energy)

Jet coherence/decoherence scenarios

 Amount of quenching can be assessed from the jet mass and/ or comparison with leptonic channel

- Possible to distinguish:
 - Quenching scenarios (amount of energy)
 - Jet coherence/decoherence scenarios

- Can we go further?
 - In theory, one can probe select timescales of the medium by using p_T > p_{T,Cut}

Time Dependent Energy Loss

- Very simple model: W decay products lose energy as
 - + $\Delta E/E = (\tau t)/\tau * 0.1$

- τ = Total medium lifetime
 - t = "total" delay time

Time Dependent Energy Loss

- Very simple model: W decay products lose energy as
 - $\bullet \quad \Delta E/E = (\tau t)/\tau * 0.1$

Remaining hadronic particles lose always 10% of energy after τ .

- τ = Total medium lifetime
 - t = "total" delay time

Time Dependent Energy Loss

- Very simple model: W decay products lose energy as
 - $\bullet \quad \Delta E/E = (\tau t)/\tau * 0.1$

Remaining hadronic particles lose always 10% of energy after τ .

- τ = Total medium lifetime
 - t = "total" delay time

0.0

Antenna decoheres outside the medium

Depending on the chosen p_T , the antenna may still lose some energy. Knowing the energy loss, it is possible to build the density evolution profile of the medium!

Top Mass For Different T's

@ HL-LHC

 Because of statistics, we can only go up to t ~ 1 fm:

It is still possible to study jet coherence/ decoherence and different medium timescales (although more limited than FCC)

Conclusions

- Boosted probes (Top, W) might allow us to:
 - Assess more precisely the amount of quenching;
 - Test further the physics of jet coherence/decoherence;
 - Build up a picture of the density evolution:
 - [0.5 3.5] fm @ FCC (and further for higher luminosities)
 - + [0.4 1.2] fm @ HL-LHC

Conclusions

- Boosted probes (Top, W) might allow us to:
 - Assess more precisely the amount of quenching;
 - Test further the physics of jet coherence/decoherence;
 - Build up a picture of the density evolution:
 - [0.5 3.5] fm @ FCC (and further for higher luminosities)
 - ★ [0.4 1.2] fm @ HL-LHC

"A Yoctosecond Chronometer."

Conclusions

- Boosted probes (Top, W) might allow us to:
 - Assess more precisely the amount of quenching;
 - Test further the physics of jet coherence/decoherence;
 - Build up a picture of the density evolution:
 - [0.5 3.5] fm @ FCC (and further for higher luminosities)
 - + [0.4 1.2] fm @ HL-LHC

"A Yoctosecond Chronometer."

Thank you!

Backup Slides

11111

Top with Right vs Wrong b-jet

Top Mass @ FCC:

All particles lose energy but the antenna

All particles lose energy but the antenna

Depending on the chosen p_T , the antenna may still lose some energy. Knowing the energy loss, it is possible to build the density evolution profile of the medium!

W Mass For Different T's

@ HL-LHC

 Because of statistics, we can only go up to t ~ 1 fm:

It is still possible to study jet coherence/ decoherence and different medium timescales (although more limited than FCC)

Pythia8 Cross Section

 Compatible with NLO CT14 but ISR contamination not entirely understood...

Pythia8: Top and W Mass vs PT

Statistical significance calculated using a bootstrap technique:

