CMS-PAS-HIN-16-006

Splitting function in pp and PbPb collisions at 5.02 TeV

Marta Verweij (CERN) for the CMS collaboration

July 27 2016 HI Jet Workshop, Ecole Polytechnique

Jet shapes and structures Run1

Jet shape observables: energy + multiplicity distributions within a jet Sensitive to the dynamics of parton shower

Small enhancement at large R and small z: 1-2 GeV + \sim 2 particles + suppression at intermediate R and z

Marta Verweij

Find the jets

Jets are not so easy to find in a heavy-ion collision Underlying event needs to be subtracted → same as for PU but now everything comes from the same vertex Particle-by-particle approach: Constituent Subtraction [1]

[1] Berta et al. arXiv:1403.3108

Why measure splitting function?

Goal: understand the evolution of the parton shower in medium

Tool: first splitting in parton shower \rightarrow only using hard jet components

Several scenarios proposed by theorists.

Here a selection of those that are probed by this measurement:

- Parton gains virtuality due to interaction with medium
 - \rightarrow increases the gluon radiation probability
 - \rightarrow modified jet structure
- Antenna picture: role of (de)coherent emitters. Depends on critical angle and therefore temperature of medium

1 coherent emitter: color connected subjets

Fig. taken from *Phys.Lett.B* **725** (2013) 357–360

Analysis techniques

pp data set has low pileup (1.4)

Constituent subtraction Berta et al. arXiv:1403.3108

Soft Drop

Anti-k_T jet is re-clustered with Cambridge/Aachen (CA) Then decluster the angular-ordered CA tree Drop branches until Soft Drop condition is satisfied

Extract the 2 branches after grooming for physics \rightarrow subjets

Observable is well understood analytically since all soft divergences are removed

Larkoski, Marzani, Thaler Phys. Rev. D91:111501 (2015) Soft Drop: JHEP 1405 (2014) 146 Groomed jet radius determined by dynamics of jet, not from outside

Jet grooming

Jet grooming removes soft divergences and uncorrelated background Common technique in HEP

This analysis is the first one using jet grooming in heavy ion collisions

Soft Drop

Soft Drop = Jet grooming technique removes large-angle soft radiation + remaining background

We use $\beta = 0$ and $z_{cut} = 0.1$ All soft emissions are removed Equivalent to modified Mass Drop $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$

angular

exponent

Soft Drop condition

 $z > z_{\text{cut}} \theta_{\lambda}$

energy threshold

Momentum fraction carried by the subleading branch of first splitting

Soft I

Emission phase space

For β =0: both soft and soft-collinear emissions are vetoed

Generalized fragmentation function

Measurement of QCD splitting function

Momentum sharing between two leading subjets:

$$z_g = \frac{\min\left(p_{T1}, p_{T2}\right)}{p_{T1} + p_{T2}};$$

Independent of α_s

Moderate dependence on jet $\ensuremath{p_{\text{T}}}$

~ same for quarks and gluons

Soft Drop: JHEP 1405 (2014) 146

Sensitive to modification of splitting function

Effect of parton-medium interaction?

Marta Verweij

Hard jet substructures

Groomed away 1-4% of total jet sample independent of centrality and p_{T,jet}

Small z_q

Large z_q

Groomed energy fraction

Larger amount of energy gets groomed away in PbPb collisions

Groomed energy fractions well described by MC

Marta Verweij

Splitting function in pp

PYTHIA8 and HERWIG reproduce the pp data within 5-10% Opposite trend for PYTHIA and HERWIG

 $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$

 $z_g =$

CMS-PAS-HIN-16-006

Splitting function in pp

PYTHIA8 and HERWIG reproduce the pp data within 5-10% **Opposite trend for PYTHIA and HERWIG**

 $\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$

 $z_{g} =$

Marta Verweij

Semi-peripheral PbPb and pp also quite similar CMS-PAS-HIN-16-006

Marta Verweij

Marta Verweij

Marta Verwei

Evolution with medium density

Jet p_T dependence

Modification gets weaker when increasing jet p_T

Model comparison

Comparison to jet quenching JEWEL MC event generator General trend of data is described by JEWEL

Model comparison

Comparison to jet quenching JEWEL MC event generator General trend of data is described by JEWEL

Conclusions

- Measurement of splitting function in pp and PbPb collisions at 5.02 TeV presented
- A significant modification of the splitting function is observed in central PbPb collisions
- Physics interpretation:
- Coherent vs incoherent emitters
 - If incoherent: energy loss fluctuations? (Guilherme)
- Measure of BDMPS radiation spectrum? (see Yacine's talk)

Extensions of measurement to probe the critical opening angle possible

2 coherent emitters: color disconnected subjets

1 coherent emitter: color connected subjets

Bonus slides

Hard jet substructures

QCD Splitting function

Feature of QCD: 1/z_g

--z^zθ |-z

Splitting Function I→2

Collinear singularity

Altarelli-Parisi splitting function

 $\frac{2\alpha_s C_i}{\pi} \frac{\mathrm{d}\theta}{\theta} \frac{\mathrm{d}z}{z}$

Jets + background subtraction

Jets in heavy-ion collisions are contaminated by huge background

Need algorithm which removes background while keeping the true jet constituents → Constituent subtraction method

Constituent subtraction

Method was developed to subtract pileup from jets

- Also successfully used in heavy-ions (jet shapes ALICE)

Particle-level approach which removes or corrects jet constituents Corrects both the 4-momentum of the jet and the substructure

- Ghosts are added to the jet uniformly
 - Ghosts have $p_T = \rho \cdot A_g$ and $m_{\delta} = \rho_m \cdot A_g$ (A_g = ghost area)
- All jet constituents are correlated with the ghosts: iterative process
- Metric $\Delta R_{i,k}$ (i=particle, k=ghost) determines if order of iterations

$$\Delta R_{i,k} = p_{\mathrm{T}i}^{\alpha} \cdot \sqrt{\left(y_i - y_k^g\right)^2 + \left(\phi_i - \phi_k^g\right)^2}.$$

- p_T and m_{δ} of particle and ghost are compared: if smaller for ghost, ghost p_T and/or $m_{\delta}~$ is subtracted from particle

Advantage of the method:

- corrects some of the local fluctuations;
- doesn't require training;
- one parameter can be tuned (α);

Constituent subtraction for jets: Berta et al. arXiv:1403.3108

Background densities

- ρ and ρ_{m} are estimated from $k_{T}\mbox{-clusters}$
 - k_T -clusters: reconstructed jets with k_T jet algorithm
 - 2 leading k_{τ} clusters are excluded to avoid bias from true jets
 - For ρp_T and area of the accepted k_T -clusters are used:

$$\rho = \operatorname{median}\left\{\frac{p_{\mathrm{T},i}}{A_i}\right\}$$

– For $\rho_m m_{\overline{o}}$ and area of the accepted k_{T} -clusters are used:

$$m_{\delta,k_{\mathrm{T}}^{\mathrm{cluster}}} = \sum_{j} \left(\sqrt{m_{j}^{2} + p_{\mathrm{T},j}^{2}} - p_{\mathrm{T},j} \right) \qquad \rho_{\mathrm{m}} = \mathrm{median} \left\{ \frac{m_{\delta,i}}{A_{i}} \right\}$$

- Both densities are estimated in different eta regions: [-5,-3,-2.1,-1.3,1.3,2.1,3,5]