Introduction Cross sections Energy loss implementation Hydrodynamic modelling of the medium Results Limitations and conclus

Extracting \hat{q} from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Carlota Andrés

Universidade de Santiago de Compostela

4th Heavy-Ion Jet Workshop, École Polytechnique, Paris

N. Armesto, Carlos A. Salgado, Matthew Luzum and Pia Zurita arXiv:1606.04837 [hep-ph]

Introduction Cross sections Energy loss implementation Hydrodynamic modelling of the medium Results Limitations and conclus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2/21

Outline

- 1 Introduction
- 2 Cross sections
- 3 Energy loss implementation
- 4 Hydrodynamic modelling of the medium
- 5 Results
- 6 Limitations and conclusions

Introduction

- Study of suppression of high-*p*_T particles in **PbPb** collisions at the LHC and **AuAu** collisions at RHIC.
- Analysis based on the quenching weights (QW) for medium-induced gluon radiation.
- QW computed in multiple soft scattering approximation.
- Embedded in different hydrodynamical descriptions of the medium.
- Study done for **different centrality clases**.
- First study of centrality and energy dependence of R_{AA} .

Single inclusive cross section

The production of a hadron h at transverse momentum p_T and rapidity y can be described by

$$\begin{aligned} \frac{d\sigma^{AA \to h+X}}{dp_T dy} &= \int \frac{dx_2}{x_2} \frac{dz}{z} \sum_{i,j} x_1 f_{i/A}(x_1, Q^2) x_2 f_{j/A}(x_2, Q^2) \\ &\times \frac{d\hat{\sigma}^{ij \to k}}{d\hat{t}} D_{k \to h}(z, \mu_F^2) \end{aligned}$$

- We use CTEQ6M (NLO) free proton parton densities.
- We take the factorization scale as $Q^2 = (p_T/z)^2$ and the fragmentation scale as $\mu_F = p_T$.
- We absorb energy loss in a redefinition of the fragmentation functions:

$$D_{k \to h}^{(med)}(z, \mu_F^2) = \int_0^1 d\epsilon P_E(\epsilon) \frac{1}{1 - \epsilon} D_{k \to h}^{(vac)} \left(\frac{z}{1 - \epsilon}, \mu_F^2 \right)$$

where $P_E(\epsilon)$ is the **Quenching Weight** and the vacuum fragmentation function, $D_{k \to h}^{(vac)}(z, \mu_F^2)$, is taken from *Florian*, *Sassot and Stratmann*.

 FF are **not** modified by medium-induced gluon radiation through QW **coherently**.

- Jet loses energy as a whole.
- nPDF are taken from the EPS09 (NLO) analysis.

Quenching Weights

• The probabilility distribution of a fractional energy loss, $\epsilon = \Delta E/E$, quenching weight, of the parton in the medium is given by

$$P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dI^{(med)}(\omega_{i})}{d\omega} \right]$$
$$\times \delta \left(\Delta E - \sum_{i=1}^{n} \omega_{i} \right) \exp \left[- \int_{0}^{\infty} d\omega \frac{dI^{(med)}}{d\omega} \right]$$

- Independent gluon emission has been assumed.
- QW are Poisson distributions.
- Support in recent works:
 - Coherence: arXiv:1209.4585 [hep-ph] J.P. Blaizot, F. Dominguez, E. lancu and Y. Mehtar-Tani.
 - Ressumation: arXiv:1209.4585 [hep-ph], arXiv:1311.5823 [hep-ph], J.P. Blaizot, F. Dominguez, E. lancu and Y. Mehtar-Tani.

ELE DOG

Multiple soft scattering approximation for a static medium

The inclusive energy distribution of gluon radiation off an in-medium produced parton is given by

$$\omega \frac{dl^{(med)}}{d\omega} = \frac{\alpha_{s} C_{R}}{(2\pi)^{2} \omega^{2}} 2Re \int_{\xi_{0}}^{\infty} dy_{l} \int_{y_{l}}^{\infty} d\bar{y}_{l} \int d\mathbf{u} \int_{0}^{\chi_{\omega}} d\mathbf{k}_{\perp}$$
$$\times e^{-i\mathbf{k}_{\perp} \cdot \mathbf{u}} e^{-\frac{1}{2} \int_{\bar{y}_{l}}^{\infty} d\xi n(\xi) \sigma(\mathbf{u})} \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{u}} \int_{y=0}^{\mathbf{u}=\mathbf{r}(\bar{y}_{l})} \mathcal{D}\mathbf{r}$$
$$\times \exp \left[i \int_{y_{l}}^{\bar{y}_{l}} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^{2} - \frac{n(\xi) \sigma(\mathbf{r})}{i\omega} \right) \right]$$

7 / 21

 \bullet $n(\xi)$, density of scattering centers.

• $\sigma(\mathbf{r})$, strength of a single elastic scattering.

In the multiple soft scattering approximation we use

$$\sigma(\mathbf{r})n(\xi)\simeq \frac{1}{2}\hat{q}(\xi)\mathbf{r}^2.$$

with $\hat{q} = \frac{\langle q_{\perp}^2 \rangle_{med}}{\lambda}$ for a static medium. Perturbative tails neglected.

- This is the definition of \hat{q} .
- All the information about the medium is contained in two quantities: \hat{q} and L or ω_c and R.
- For a static medium: $\omega_c = \frac{1}{2}\hat{q}L^2$ and $R = \omega_c L$.
- In a dynamic medium we use a scaling law which relates the energy distribution in a collision of arbitrary dynamical expansion to an equivalent static scenario.
- We make use of the following scaling relations:

$$\omega_c^{eff}(x_0, y_0, \tau_{prod}, \phi) = \int d\xi \xi \hat{q}(\xi),$$

$$R^{eff}(x_0, y_0, \tau_{prod}, \phi) = \frac{3}{2} \int d\xi \xi^2 \hat{q}(\xi), \quad \text{is a set of } \{ 8 \mid 21 \}$$

We specify the relation between *q̂*(ξ) and the medium properties given by our hydrodynamic model as

$$\hat{q}(\xi) = K \hat{q}_{QGP}(\xi) \simeq K \cdot 2\epsilon^{3/4}(\xi)$$

K is our **fitting parameter**

The production weight is given by

$$\omega(x_0, y_0) = T_{Pb}(x_0, y_0) T_{Pb}(\vec{b} - (x_0, y_0))$$

 The average values of an observable and in particular of our fragmentations functions is computed as

$$\langle \mathcal{O} \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0) \mathcal{O}(x_0, y_0, \phi)$$

$$\langle D_{k \to h}^{(med)}(z, \mu_F^2) \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0)$$

$$\times \int d\zeta P(x_0, y_0, \phi, \zeta) \frac{1}{1 - \zeta} D_{k \to h}^{(vac)} \left(\frac{z}{1 - \zeta}, \mu_F^2 \right)$$
where $N = 2\pi \int dx_0 dy_0 \omega(x_0, y_0).$

Hydrodinamic medium modelling

- Energy density obtained by solving the relativistic hydrodynamic equations.
- We use several hydrodynamic simulations:
 - "Hirano": no viscous, optical Glauber model, $\tau_0 = 0.6$ fm.
 - Glauber": viscous $\eta/s=0.08$, energy density proportinal to ρ_{bin} as initial condition, $\tau_0 = 1$ fm.
 - "fKLN": viscous η /s=0.16, factorised Kharzeev-Levin-Nardi model, $\tau_0 = 1$ fm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

10/21

 Uncertainty coming from the hydrodynamic background is negligible with respect to our conclusions.

Energy loss for times prior to hydrodynamic behavior

 Ambiguity on the value of the transport coefficient for values smaller than the thermalization time τ₀.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We use three extrapolations.
 - Case i): $\hat{q}(\xi) = 0$ for $\xi < \tau_0$,
 - Case ii): $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$,
 - Case iii): $\hat{q}(\xi) = \hat{q}(\tau_0)/\xi^{3/4}$ for $\xi < \tau_0$

Nuclear modification factor

The experimental data used in our analysis are given in terms of the nuclear modification factor for single measurements

$$R_{AA} = \frac{dN_{AA}/d^2 p_T dy}{\langle N_{coll} \rangle dN_{\rho\rho}/dp_T^2 dy}$$

- Experimental data is: Pb-Pb collisions at LHC energy $\sqrt{s_{\rm NN}} = 2.76$ TeV and Au-Au at RHIC energy $\sqrt{s_{\rm NN}} = 200$ GeV.
- ALICE data on R_{AA} for charged particles with p_T > 5 GeV in different centrality classes and for |η| < 0.8, arXiv:1208.2711 [hep-ex].

- PHENIX data on $\pi_0 R_{AA} p_T > 5$ GeV, arXiv:0801.4020 [nucl-ex].
- Results for different values of K = K'/1.46, where $K = \hat{q}/2\epsilon^{3/4}$.

$R_{\rm AA}$ at $\sqrt{s_{NN}} = 200$ GeV for different centralities

Suppression of inclusive π^0 in AuAu collisions at $\sqrt{s_{\rm NN}} = 200$ GeV for different values of K compared with PHENIX data at different centralities. Curves from top to bottom correspond to K = K'/1.46, with $K' = 2, 2.25, 2.5, \dots, 6$, using the "Hirano" model and \hat{q} constant before thermalization.

$R_{\rm AA}$ at $\sqrt{s_{NN}} = 2.76$ TeV for different centralities

 R_{AA} in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV for different values of K compared to ALICE data at different centralities. Curves from top to bottom correspond to K = K'/1.46, with $K' = 0.5, 0.7, 0.9, \dots, 3.1$, using the "Hirano" model and \hat{q} constant before thermalization.

K-factor vs. b for \hat{q} constant before thermalization

K-factors obtained from fits to PHENIX R_{AA} data (*left panel*) and to ALICE R_{AA} data(*right panel*) using different hydrodynamic profiles versus the average impact parameter for each centrality class and the energy density constant before thermalization.

イロト 不得 トイヨト イヨト ヨ

K-factor vs. b for the free-streaming extrapolation

K-factors obtained from fits to PHENIX R_{AA} data (*left panel*) and to ALICE R_{AA} data (*right panel*) using different hydrodynamic profiles as a function of the average impact parameter for each centrality class and for the free-streaming case.

・ロト ・ 日本 ・ 日本 ・ 日本

K-factor vs. b for $\hat{q}(\xi) = 0$ before thermalization

K-factors obtained from fits to PHENIX R_{AA} data (*left panel*) and to ALICE R_{AA} data (*right panel*) using different hydrodynamical profiles versus the average impact parameter for each centrality class and for $\hat{q}(\xi) = 0$ before thermalization.

17 / 21

イロト イポト イヨト イヨト

K-factor vs. $\epsilon \tau_0$ for \hat{q} constant before thermalization

K-factor obtained from fits to R_{AA} data at RHIC and LHC energies for different centrality classes plotted as a function of an estimate of the energy density times formation time τ_0 of the QCD medium formed in each case.

Estimates taken from: arXiv:1509.06727 [nucl.ex] PHENIX Collaboration and arXiv:1603.04775 [nucl.ex] ALICE collaboration. Introduction Cross sections Energy loss implementation Hydrodynamic modelling of the medium Results Limitations and conclus

$R_{ m AA}$ predictions for $\sqrt{s_{ m NN}}=5.02$ TeV

Top: Curves for PbPb collisions at $\sqrt{s_{\rm NN}} = 2.76$ (dashed blue) and 5.02 (solid green) TeV and the 0-5% centrality class using "Glauber" and "fKLN" hydrodynamic evolution and \hat{q} constant before thermalization. Bottom: Ratios of the corresponding curves for 5.02 TeV w.r.t. 2.76 TeV./21

Limitations

- The definition of *q̂* neglects the **perturbative tails** of the distributions.
- The QW find support in the coherence analysis of the medium: if coherence is broken they could fail.
- Scaling relations have been only proved for $\hat{q}(au) \propto 1/ au^{lpha}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Finite lenght corrections.
- Finite energy corrections.
- \hat{q} energy or length independent.
- Collisional energy loss is neglected.

Conclusions

- We fit the single-inclusive experimental data at RHIC and LHC for different centralities.
- The fitted value at RHIC confirms large corrections to the ideal case.
- For the case of the LHC, the extracted value of *K* is close to **unity**.
- *K*-factor is $\sim 2-3$ times larger for RHIC than at the LHC.
- Centrality dependences at RHIC and the LHC are rather flat.
- The change in the value of *K* does **not** look to be simply due to the different **local medium parameters**.

21 / 21

Unexpected result!

Backup

RHIC results

Nuclear modification factors R_{AA} for single-inclusive and I_{AA} for hadron-triggered fragmentation functions for different values of 2K = K'/0.73, with K' = 0.5, 1, 2, 3, ..., 20. The green line in the second the curve corresponding to the minimum of the common fit to $R_{AA}/21$

Left: χ^2 -values for different values of K for light hadrons and for the three different extrapolations for $\xi < \tau_0$. Red lines correspond to single-inclusive π_0 data from PHENIX (R_{AA}) and black ones to the double-inclusive measurements by STAR (I_{AA}). Right: the corresponding central values (minima of the χ^2) and the uncertainties computed by considering $\Delta\chi^2 = 1$.

21/21

Tetsufumi Hirano, arXiv: nucl-th/0108004

FIG. 3. Scaled transverse momentum distribution of negative pions and anti-protons in Au+Au 130 A GeV central and semi-central collisions. Solid lines and dashed lines correspond to initial conditions A and B, respectively. Experimental data are observed by the PHENIX Collaboration.

Tetsufumi Hirano and Keiichi Tsuda, arXiv:nucl-th/0205043

FIG. 12: $v_2(p_t)$ for charged pions. The solid, dotted, and dashed lines correspond to total pions, pions directly emitted from freeze-out hypersurface, and pions from resonance decays. Data from Ref. [56].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicity at RHIC

FIG. 7: (Color online) Centrality dependence of total multiplicity dN/dY and < pr > 5 for $\pi_f + \pi^-, K^-, K^-$ p and \bar{p} from PHENIX [84] for Au+Au collisions at $\sqrt{\pi} = 200$ GeV, compared to the viscous hydrodynamic model and various n/s, for Glauber initial conditions and CGC initial conditions. The model parameters used here are $\tau_0 = 1$ fm/c, $\tau_{\Pi} = 6\eta/s$, $\lambda_1 = 0$, $T_f = 140$ MeV and adjusted T_i (see Table 1).

・ロト ・日本 ・ モン ・ モン モーモー つへの
21 / 21

v_2 at RHIC

Matthew Luzum and Paul Romatschke, arXiv:0804.4015 [nucl-th]

21 21 v_2 at LHC

Matthew Luzum and Paul Romatschke, arXiv:0901.4588 [nucl-th]

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

21 / 21

FIG. 2: (Color online) Anisotropy (3) prediction for $\sqrt{s} = 5.5$ TeV Pb+Pb collisions (LHC), as a function of centrality. Prediction is based on values of η/s for the Glauber/CGC model that matched $\sqrt{s} = 200$ GeV Au+Au collision data from PHOBOS at RHIC ([31], shown for comparison). The shaded band corresponds to the estimated uncertainty in our prediction from additional systematic effects: using $e_p/2$ rather than v_2 (5%) [1]; using a lattice EoS from [29] rather than [27] (5%); not including hadronic cascade afterburner (5%) [38] In the case of 'Hirano's ideal hydro', the values of the temperature at tau=0.6 fm and x=y=eta=0 for RHIC and LHC are:

LHC	RHIC
00-05%: 484.3 MeV	00-05%: 373.2 MeV
05-10%: 476.6 MeV	00-10%: 369.6 MeV
10-20%: 463.6 MeV	10-20%: 356.8 MeV
20-30%: 444.6 MeV	20-30%: 341.1 MeV
30-40%: 421.5 MeV	30-40%: 323.7 MeV
40-50%; 393.6 MeV	
50-60%: 359.6 MeV	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

'Matt's viscous hydro for two different initial conditions and
 η/s' .lnitial temperatures at x=y=0, tau=1 fm:
fKLN:
b=2 fm LHC: 418 MeVb=2 fm LHC: 389 MeVb=12 fm LHC: 272 MeVb=12 fm LHC: 296 MeVb=2 fm RHIC: 331 MeVb=2 fm RHIC: 299 MeV

 $\hat{q} \sim T^3 \sim \epsilon^{3/4}$ both for hadronic and partonic phase arXiv:hep-ph/0209038, R. Baier.

Figure 3. Transport coefficient as a function of energy density for different media: cold, massless hot pion gas (dotted) and (ideal) QGP (solid curve)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

K versus intial temperature

K versus intial energy

<ロト < 郡ト < 臣ト < 臣ト 是下 のへの 21 / 21