Jet and Charged Hadron R_{AA}

Austin Baty (MIT) on behalf of the CMS Collaboration

4th Heavy-Ion Jet Workshop École Polytechnique July 27, 2016

R_{AA} Motivation

- Jet R_{AA} direct measurement of jet energy loss
 - Hides how the remaining energy is distributed among remaining jet constituents
 - $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}^2 N_{\rm ch}^{\rm AA}/{\rm d}p_{\rm T}\,{\rm d}\eta}{\langle T_{\rm AA}\rangle\,{\rm d}^2\sigma_{\rm ch}^{\rm PP}/{\rm d}p_{\rm T}\,{\rm d}\eta}$
- Charged particle R_{AA} contains wealth of information
 - Initial state shadowing
 - Hydrodynamic flow
 - N_{coll} vs. N_{part} scaling
 - Jet quenching
 - Reference for heavy flavor measurements
 - (See Gian Michele's talk from Tues.)
- Both R_{AA}'s sensitive to path length, temperature, medium interaction strength
- Will focus on the high- p_T region to examine relationship with jet R_{AA} in this talk

2

- Details of feed down due to energy loss affects jet R_{AA}
- Feed down through modified Frag. Functions affects ch. particle R_{AA} as well

2.76 TeV Jet R

- CMS R_{AA} scales from 0.8 to 0.5 with centrality
 - Roughly flat last bin higher
- ATLAS similar scaling with centrality
 - Slight increasing slope seen with p₊

2.76 TeV Fragmentation Function Ratio

2.76 TeV Charged Particle R

JHEP 1509 (2015) 050

- High pT observed to be 0.5-0.6 with slowly rising slope
 - Approximately the same as the jet $\mathsf{R}_{_{\!\!AA}}$ value
- Does the distribution plateau at 0.6 or keep rising?
- What is the dependence on collision energy?
 - ... and are models fit to 2.76 TeV able to predict it?

5.02 TeV Charged Particle R_{AA}

R_{AA} and Collision Energy

Increasing energy loss and collision energies have opposite effects on R_{AA}

R_{AA} and Collision Energy

• Increasing energy loss and collision energies have opposite effects on $R_{_{AA}}$

Dataset

- 404 µb-1 (PbPb) and 25.8 pb-1 (pp) from Fall 2015
 - Previously 150 $\mu b^{\mbox{-}1}$ (PbPb) and 0.23 $pb^{\mbox{-}1}$ (pp) at 2.76 TeV
- Minimum Bias and Jet Triggers
 - Peripheral triggers boost statistics in 30-100% and 50-100%
- Checked with high-pT track triggers
- 28 triggers total High statistics; reach up to 400 GeV

Trigger Combination

- Take distributions of leading jet pT with $|\eta| < 2$
- Ratio of number of jets from each trigger in pT region of constant efficiency

Building PbPb Spectra

- At given leading jet pT, count tracks originating only from the highest fully efficient trigger
 - Require track |η|<1
- Repeated using leading track pT and track triggers in both PbPb and pp
- Normalization
 - PbPb Number of MB events
 - pp luminosity
 - Inelastic event class
 - Scaled by TAA from Glauber
- Spectra corrected for efficiency and misreconstruction track-by-track

Sources	Uncertainty [%]
Event-selection correction	<1
Momentum resolution	1.5
Particle species composition	1.5-15.5
Fraction of misreconstructed tracks	3
Tracking correction non-closure	5
Tracking efficiency	6.5
Track selection	4
Pileup	3
Trigger combination	0–2.5
Luminosity	12
Glauber-model uncertainty	1.7–16
R_{AA} uncertainty	10–17

• CMS track momentum resolution is very good – no unfolding is applied

Sources	Uncertainty [%]
Event-selection correction	<1
Momentum resolution	1.5
Particle species composition	1.5-15.5
Fraction of misreconstructed tracks	3
Tracking correction non-closure	5
Tracking efficiency	6.5
Track selection	4
Pileup	3
Trigger combination	0–2.5
Luminosity	12
Glauber-model uncertainty	1.7–16
R_{AA} uncertainty	10–17

- CMS track momentum resolution is very good no unfolding is applied
- 6.5% uncertainty from data-driven studies of tracking efficiency using decays from D* mesons in pp and variation of track selections in PbPb

Sources	Uncertainty [%]
Event-selection correction	<1
Momentum resolution	1.5
Particle species composition	1.5-15.5
Fraction of misreconstructed tracks	3
Tracking correction non-closure	5
Tracking efficiency	6.5
Track selection	4
Pileup	3
Trigger combination	0–2.5
Luminosity	12
Glauber-model uncertainty	1.7–16
R_{AA} uncertainty	10–17

- CMS track momentum resolution is very good no unfolding is applied
- 6.5% uncertainty from data-driven studies of tracking efficiency using decays from D* mesons in pp and variation of track selections in PbPb
- R_{AA} uncertainty: 10-17% not including 12% from pp luminosity (expected to improve in the future) and Glauber uncertainty

Peripheral R_{AA}

- Peripheral RAA is fairly flat at ~0.65 up to ~100 GeV
 - Same value as previous CMS measurement at 2.76 TeV
 - Large Glauber uncertainty

Mid-Central R_{AA}

- Slightly more suppression seen than in 2.76 TeV
- 10-30% suppressed by a factor of ~5 at 10 GeV, but only 1.2 at 400 GeV

Central R_{AA}

- Rising trend in central events continues well past 80 GeV
- No strong increase in suppression as compared to 2.76 TeV data in central events
 - Doesn't necessarily mean energy loss is the same!

Comparison with Models

- SCET $_{_{\rm G}}$ QCD evolution with in-medium splitting functions
 - Y. Chien et al. arXiv:1509.02936 (with cold nuclear matter effects)
- CUJET 3.0 Model
 - J. Xu et al. JHEP 1602 (2016) 169

Comparison with Models (II)

- Andrés C. et al. Model:
 - Define jet quenching parameter: $\hat{q} = 2 \mathrm{K} \, \mathrm{e}^{3/4}$
 - Fit K for each beam energy, centrality bin (RHIC and LHC data)
- "K-factor does not seem to depend on the medium parameters, e.g., the temperature, but instead on the center of mass energy..."
- Undershoots our new R_{AA} measurement
- Authors noted that increasing K by 10% would produce better agreement

R_{AA} Compilation

5 TeV R_{AA} Conclusions

25.8 pb⁻¹ (5.02 TeV pp) + 404 μb⁻¹ (5.02 TeV PbPb) CMS measured first ch. particle 2 CMS SPS 17.3 GeV (PbPb) LHC 5.02 TeV (PbPb) R_{AA} at 5 TeV to 400 GeV 1.8 CMS (0-5%) • π⁰ WA98 (0-7%) Preliminary π[±] NA49 (0-5%) Models 5.02 TeV (PbPb) Significant increase in high-pT SCET_G (0-10%) RHIC 200 GeV (AuAu) 1.6 reach to constrain energy loss • π^0 PHENIX (0-5%) - CUJET 3.0 (h[±]+ π^0 , 0-10%) h[±] STAR (0-5%) models 1.4 LHC 2.76 TeV (PbPb) ALICE (0-5%) 1.2 ATLAS (0-5%) Central suppression at 5 TeV RAA CMS (0-5%) looks similar to 2.76 TeV Doesn't necessarily mean the 0.8 SPS energy loss is the same! 0.6 RHIC Comparison with 5 TeV jet R_{AA} 0.4 (and FF) will be interesting to LHC 0.2 see if high p_{τ} also trends to 1 0 100p_{_} (GeV) CMS-PAS-HIN-15-015

Thank You!

Corrections

- Efficiency, misreconstruction corrections applied on track-by-track basis
 - PYTHIA or PYTHIA+Hydjet
- Correct for changing primary particle composition as a function of centrality
 - DDDDDDhave a much lower efficiency than DDK, p
 - Few data-based constraints on strangeness enhancement vs. centrality
 - Correction reweighted halfway between PYTHIA and EPOS
 - Affects the 3-6 GeV region where models differ the most

Sources	Uncertainty [%]
Event-selection correction	<1
Momentum resolution	1.5
Particle species composition	1.5–15.5
Fraction of misreconstructed tracks	3
Tracking correction non-closure	5
Tracking efficiency	6.5
Track selection	4
Pileup	3
Trigger combination	0–2.5
Luminosity	12
Glauber-model uncertainty	1.7–16
R_{AA} uncertainty	10–17

- CMS track momentum resolution is very good no unfolding is applied
- Particle species correction is the leading systematic in 3-6 GeV range

All Centrality Bins

25.8 pb⁻¹ (5.02 TeV pp) + 404µb⁻¹ (5.02 TeV PbPb)

With Comparisons

25.8 pb⁻¹ (5.02 TeV pp) + 404µb⁻¹ (5.02 TeV PbPb)

