

Guilherme Milhano [with Korinna Zapp]

LIP Lisbon & CENTRA-IST Lisbon & CERN TH guilherme.milhano@cern.ch

4th Heavy-Ion Jet Workshop, École Polytechnique — 27 Jul 2016

 observed increase in di-jet asymmetry in AA collisions due to peeling-off of soft radiation [both vacuum-like and medium-induced]

- observed increase in di-jet asymmetry in AA collisions due to peeling-off of soft radiation [both vacuum-like and medium-induced]
- NOT compatible with jet energy loss via induced radiation of few hardish gluons

- observed increase in di-jet asymmetry in AA collisions due to peeling-off of soft radiation [both vacuum-like and medium-induced]
- NOT compatible with jet energy loss via induced radiation of few hardish gluons
- original works assumed [at least implicitly] considerable path-length difference between the two jets

- observed increase in di-jet asymmetry in AA collisions due to peeling-off of soft radiation [both vacuum-like and medium-induced]
- NOT compatible with jet energy loss via induced radiation of few hardish gluons
- original works assumed [at least implicitly] considerable path-length difference between the two jets
 - thus, that path-length difference was assumed important for the increase of asymmetry

DOES THE LEADING JET TRAVERSE LESS QGP?

- small bias towards smaller path-length for leading jets
 - ► however, significant fraction [34%] of events have longer path-length for leading jet
 - consequence of fast medium expansion

 difference in path-length DOES NOT play a significant role in the observed modification of A_I distribution

CORRELATION OF PATH-LENGTH DIFFERENCE WITH A_J

► mild correlation between path-length difference and A_I

- [more asymmetric events arise from larger average path-length differences]
- ► however, shift of distribution from lowest to highest A_I much smaller than width of distributions
- effect of average path-length clearly seen in centrality dependence of A_I distribution [not for this talk]
- effect of difference in path-length clearly seen from azimuthal angle dependence [not for this talk]

► a lot of discussion in this meeting on ability to describe accurately pp baselines

- not an issue here: JEWEL provides reasonable description of A_J in both pp and AA
- ► all in this talk is JEWEL with NO recoils
- ► the whole analysis is RIVET[ized] :: recall Lisbon Accord

EVENT SAMPLES

- ➤ √s = 2.76 TeV
- simple parametrized background [few tests with full hydro showed no sizeable difference]
- ► $\tau_i = 0.6 \text{ fm}; T_i = 485 \text{ MeV}; T_c = 170 \text{ MeV}$
- ► fully central events only [b=0] :: this is not a data comparison exercise
- matching baseline samples for pp
- ► di-jet sample [JEWEL 2.0.2]
 - ► anti- $k_t R$ =0.4 jets within $|\eta| < 2$
 - ► $p_{T,1}$ >100 GeV; $p_{T,2}$ >20 GeV; $\Delta \phi_{12}$ > $\pi/2$
- ► γ-jet sample [unreleased extension of JEWEL 2.0.2 :: Rajhav's talk]
 - ► $p_T < 5$ GeV photons removed before jet reconstruction
 - ► anti-k_t R=0.4 jet within $|\eta| < 5$ with $p_T > 20$ GeV
 - initial parton within |η| <2.5 with p_T>20 GeV [to avoid cases where no jet is reconstructed because there is no initial parton in relevant phase space]
 - ► LO matrix element [only one initial parton in the event]

A_J IN pp COLLISIONS

- in pp collisions di-jet asymmetry can only arise from fluctuations in the splitting pattern of the jets
 - radiation out of reconstruction cone [multiple jet events, fatter jets]
 - initial pair of hard partons cannot have an asymmetry [this statement is also true beyond LO]
 - define initial asymmetry as including all recoil effects from ISR [taken by final state partons] and first FSR [taken by the other final state parton]

reconstructed jets asymmetry mostly accounted for by asymmetry of 'initial' parton configuration

effect of recoil against first FSR is small [not shown]

Ebe Initial-Final Asymmetry Correlation

showering slightly increases average asymmetry

Ebe Initial-Final Asymmetry Correlation

showering slightly increases average asymmetry

larger energy loss for sub-leading jet

Ebe INITIAL-FINAL ASYMMETRY CORRELATION

showering slightly increases average asymmetry

- larger energy loss for sub-leading jet
- sub-leading jets originate from initial partons with higher mass to pt ratio [those with a softer fragmentation pattern]

GAMMA-JET INTERMEZZO [still pp]

- transverse momentum loss when going from parton to reconstructed jet in di-jet events requires ill-defined parton-jet matching procedure
 - straightforward in γ-jet events without ISR
 - ► no ISR jets
 - only one initial parton from which all reconstructed jets must originate
 - associate hardest reconstructed jet to initial parton

$$\Delta p_{\perp} = p_{\perp}^{(\mathrm{in})} - p_{\perp}^{(\mathrm{jet})}$$

transverse momentum loss largely determined by mass-to-pt ratio

GAMMA-JET INTERMEZZO [still pp]

- transverse momentum loss largely determined by mass-to-pt ratio
 - strong dependence for bulk of distribution
 - saturation at high ratio result from reconstruction cone radius [large angle structure beyond R] :: will shift to higher values for higher R

[finally] A_J IN AA COLLISIONS

- ► what drives the increase of asymmetry in heavy ion collisions?
 - NOT path-length difference
 - ► nPDF effects are very small in the relevant kinematics
 - first FSR, typically hard, occurs on very short time-scale
 [~0.01 fm] and is unaffected by medium
 - 'initial' [partonic] asymmetry is the same as in pp

the increase in asymmetry in AA collisions must originate from fluctuations in vacuum like fragmentation pattern and/or fluctuations of jet-medium interactions

VACUUM-LIKE OR MEDIUM INDUCED

- distinction obviously not meaningful
 - ► a gluon is a gluon is a gluon is a gluon
- however, emissions at scales well above medium scales cannot be attributed to jet-medium interaction :: we refer to these as the vacuum-like part of the fragmentation pattern
 - which does NOT mean they are irrelevant for energy loss
 - ► [in fact quite the contrary]

ROLE OF VACUUM-LIKE FRAGMENTATION IN ENERGY LOSS

- jets with softer fragmentation pattern [softer and in larger number constituents] lose more energy
 - each resolved jet constituent is candidate for energy loss
 Casalderrey, Mehtar-Tani Salgado, Tywoniuk ::1210.7765 [hep-ph]

 the more constituents the larger the energy loss
 - soft components more likely to be transported away from reconstruction radius
 Casalderrey, Milhano, Wiedemann ::1012.0745 [hep-ph]

► both mechanisms present in JEWEL

jet-medium interactions leading to energy loss amplified in jets with softer fragmentation [higher initial mass to p_t ratio]

ROLE OF VACUUM-LIKE FRAGMENTATION IN ENERGY LOSS

same qualitative behaviour for momentum loss as in pp

- ► importance of vacuum-like fluctuations of fragmentation pattern
- ► p_t loss larger [by a factor of 2] than in pp
- near independence of mass to p_t ratio for lower energy jets shows importance of fluctuations of medium induced energy loss

INTERPLAY OF VACUUM AND MEDIUM-INDUCED FLUCTUATIONS

- broader distributions in AA
 - Iarge initial asymmetries are reduced [events are lost]

same trend as in pp [importance of vacuum-like fluctuations], albeit weaker [importance of jet-medium interaction fluctuations]

WHAT WE LEARNT

- the path-length difference between the leading and sub-leading jets in a di-jet pair does not play a significant role in generating momentum imbalance
- the increase in di-jet asymmetry in AA collisions is the result of the compound effect of fluctuations in the vacuum-like fragmentation pattern [parton shower features also present in the absence of a medium] and medium related fluctuations
- to a large extent, the amount of energy lost from a jet is determined by the mass to transverse momentum ratio of the parton from which it originates

- amplification of energy loss for jets with larger number of constituents clearly identified earlier
 - Casalderrey, Mehtar-Tani Salgado, Tywoniuk :: 1210.7765 [hep-ph] here confirmed in a realistic MC

- $\label{eq:analogous result from strongly coupled calculation [mass to p_t] ratio \sim jet width] Rajagopal, Sadofyev, van der Schee ::1602.04187 [hep-ph] ratio \sim jet width $$] ratio \sim jet width $$] ratio $< p_t ratio $< p_t ratio $< p_t ratio $$ adofyev, van der Schee ::1602.04187 [hep-ph] $$ ratio $$ ra$
 - [does that make it more robust?]

NEXT

- ► initial mass to p_t ratio obviously not measurable
 - ► find proxy [which is not easy]
 - proxy should be jet property that is insensitive to medium effects [an unquenchable]
 - proxy would be ideal 'binning variable' to study quenching

- the observable post-mortem protocol outlined here could/should be replicated for any observable of interest
 - Sestive to essential to understand what each observable is sensitive to

SOME SPECULATION ON MARTA'S OBSERVABLE

SOME SPECULATION ON MARTA'S OBSERVABLE

which shall remain off-the-record

CONTAMINATION FROM ISR

- minor contamination from ISR jets
- ► ISR jets removed by parton-jet matching
 - ► this is the only plot for which [ill-defined] parton-jet matching is invoked
- ► ISR jets will not change the conclusions of the study

J

$A_J^{(in)}$ bin	$(\sigma_{\rm pp} - \sigma_{\rm PbPb})/\sigma_{\rm pp}$
$0.0 < A_J^{(in)} < 0.2$	0.623 ± 0.002
$0.2 < A_J^{(in)} < 0.4$	0.699 ± 0.009
$0.4 < A_J^{(in)} < 0.6$	0.729 ± 0.034
$0.6 < A_J^{(in)} < 1.0$	0.354 ± 0.291
$0.0 < A_J^{(in)} < 1.0$	0.637 ± 0.002

.

. .