Introduction	Experimental setup	Background	Experiment reach	Conclusions

The BDX experiment at Jefferson Laboratory

Andrea Celentano

INFN-Genova

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00000	000	00	O
Outline				

2 Experimental setup

3 Background

Introduction	Experimental setup	Background	Experiment reach	Conclusions
●00	00000	000	00	0
A fixed target LD	M experiment			

Beam Dump eXperiment: LDM direct detection in a e^- beam, fixed-target setup χ production

- High-energy, high-intensity e^- beam impinging on a dump
- χ particles pair-produced radiatively, trough A' emission (both on-shell or off-shell).

χ detection

- Detector placed behind the dump, O(10m)
- Neutral-current χ scattering trough A' exchange,recoil releasing visible energy
- Different signals depending on the interaction (e^- elastic, p quasi-elastic,...)

Number of events scales as (on-shell): $N \propto rac{lpha_D arepsilon^4}{m_A^4}$

¹For a comprehensive introduction: E. Izaguirre *et al*, Phys. Rev. D 88, 114015

Main features of χ production in the beam dump follows from thin-target kinematics $* e^-$ energy loss and secondaries emission in the dump

Thin target kinematics (on-shell A'):

- A' emitted forward, $E_A \simeq E_0$
- χ beam with very sharply peaked-forward kinematics
- e^- in the dump:
 - + e^- loses energy by ionization and Bremsstrahlung: χ kinematics gets broader
 - Secondary (low-energy) e^- are produced: more χ particles are emitted

Introduction	Experimental setup	Background	Experiment reach	Conclusions
00●	00000	000	00	O
LDM detection				

Two main processes are considered (altough others may be possible)

χ -p quasi-elastic scattering

- Nucleon recoil: sizeable cross section for $T_N\!>\!1\text{--}10~{\rm MeV}$
- Signal in a single detector channel
- Low energy background rejection capability is required

χ -e elastic scattering

- e⁻ recoil: EM shower (O(GeV)) with signals in multiple channels
- Background rejection is not critical

The simultaneous measurement of **both** e^- and p signals would provide a strong evidence of LDM existence.

The experiment is designed with two goals:

Producing and detecting LDM

- High-intensity e⁻ beam, O(10²¹-10²²) EOT/year
- Medium-high energy, O(5-10) GeV
- $\simeq 1 \ m^3$ (1-5 tons) detector
- Low-energy thresholds
- EM-showers detection capability

Reducing background

- Passive shielding and active vetos
- Segmented detector for events discrimination
- Good time resolution
- Different technologies for systematic checks

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	0●000	000	00	0
JLab facility				

Beam Dump eXperiment at Jefferson Laboratory: ideal location is behind the Hall-A beam dump

- \bigcirc About 350 C/year $(2.2\cdot 10^{21}$ EOT) of beam will be delivered to the Hall-A beam-dump with expected running of 25 weeks/year at \simeq 50 $\mu {\rm A}$
- Almost-continuous beam (4 ns time period): very good detector time resolution is required to make a beam coincidence

Hall-A beam-dump: Aluminum plates immersed in water for cooling.

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00●00	000	00	O
BDX detector con	ncept			

Requirements

- High-density to maximize event yield
- Low threshold for nucleon recoil detection (MeV) + EM showers detection capability
- Segmentation for background rejection
- Active veto and passive shielding

BDX design

- EM calorimeter made with Csl(Tl) crystals+SiPM-based readout
- Two active-veto layers, made with plastic-scintillator counters read by SiPM and PMTs
- 5-cm thick lead layer betwen inner and outer veto

BDX detector sketch Passive shielding Veto for charged Segmented Detector

Total active volume: \simeq 0.5 m^3

The detector design is currently being optimized, using results from MC simulations and background measurements with a small-scale prototype

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00●00	000	00	0
BDX detector co	ncept			

Requirements

- High-density to maximize event yield
- Low threshold for nucleon recoil detection (MeV) + EM showers detection capability
- Segmentation for background rejection
- Active veto and passive shielding

BDX design

- EM calorimeter made with Csl(Tl) crystals+SiPM-based readout
- Two active-veto layers, made with plastic-scintillator counters read by SiPM and PMTs
- 5-cm thick lead layer betwen inner and outer veto

Total active volume: \simeq 0.5 m^3

The detector design is currently being optimized, using results from MC simulations and background measurements with a small-scale prototype

Calorimeter lavout					
000	00000	000	00	0	
Introduction	Experimental setup	Background	Experiment reach	Conclusions	

BDX calorimeter: use the existing BaBar CsI(TI) crystals with improved SiPMbased readout **BaBar Csl**

Detector design:

- \simeq 800 CsI(TI) crystals, total interaction volume $\simeq 0.5m^3$
- Simplified assembly mechanics
- Modular detector: change front-face • dimesions and total lenght by re-arranging crystals

Possible arrangement:

- 1 module: 11×11 crystals, 30-cm long. Front face: 50x50 cm²
- 7 modules: interaction length 2.1 m

Single module lavout

10/25

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	0000●	000	00	0
Calorimeter F	7&D			

Characterization campaign to measure crystal+SiPM properties

- Light-yield with SiM readout : $\simeq 1$ phe / MeV / mm²
- Time resolution '@ 30 MeV: $\sigma_T = 7$ ns
 - Signals at MeV level are detectable
- Despite a long scintillation time a few ns time coincidence is possible.

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	0000●	000	00	0
Calorimeter F	₹&D			

Characterization campaign to measure crystal+SiPM properties

- Light-yield with SiM readout : $\simeq 1$ phe / MeV / mm²
- Time resolution @ 30 MeV: $\sigma_T = 7$ ns
 - Signals at MeV level are detectable
- Despite a long scintillation time a few ns time coincidence is possible.

Response to low-energy p has been measured with p beam at INFN-LNS: low-energy LY, light-quenching, detection efficiency, ...

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00000	●00	00	O
Beam-related bac	kground			

Backgrounds created by beam interaction with the dump: estimated via MC

Challenges:

- Computing: high EOT and energy
- Physics: modelling GeV to eV, low energy nuclear reactions, neutron transport
- Brute-force G4-approach

Combined approach

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00000	●00	00	O
Beam-related background				

Backgrounds created by beam interaction with the dump: estimated via MC

Challenges:

- Computing: high EOT and energy
- Physics: modelling GeV to eV, low energy nuclear reactions, neutron transport

• Brute-force G4-approach

Combined approach

- Model beam dump geometry and materials
- High precision physics lists: QGSP_BERT_HP + EM_HP
- Determine fluxes of particles exiting from the dump and reaching the detector locations

```
O(10<sup>9</sup>-10<sup>10</sup>) EOT (\mus @ 100 \muA): only \nu from \pi decay reach the detector
```


Introduction	Experimental setup	Background	Experiment reach	Conclusions			
000	00000	●00		O			
Beam-related background							

Backgrounds created by beam interaction with the dump: estimated via MC

Challenges:

- Computing: high EOT and energy
- Physics: modelling GeV to eV, low energy nuclear reactions, neutron transport
- Brute-force G4-approach

- G4 for treatment of high energy (GeV to MeV) interactions: sample particle fluxes at different depths within the dump, and extrapolate non-zero values to full luminosity
- Validate results for low energy n/γ with MCNP

Beam-related background (except ν) can be reduced to 0 with sizable shielding (\simeq 8 m iron + concrete)

15 / 25

 Considering flux, interaction cross sections and detection threshold the number of detected cosmic neutrinos is negligible

Neutrons:

- A high energy neutron can penetrate the shielding and interact inside the detector mimicking a χ -N scattering
- 1m iron shield + detection energy threshold introduce a neutron energy cutoff (detection efficiency = 0 for $T_n < 50 \div 100$ MeV)

Muons: different background topologies

- Crossing muons not rejected by veto / crystals multiplicity
- Muons decaying inside the detector (missing prompt signal)
- Muons decaying inside the lead shielding
- Muons decaying between iron and veto
- Rare muon decays

Preliminary MC simulations shows cosmogenic bck is $\simeq (100)^2$ events / year =

16 / 25

 Considering flux, interaction cross sections and detection threshold the number of detected cosmic neutrinos is negligible

Neutrons:

- A high energy neutron can penetrate the shielding and interact inside the detector mimicking a χ-N scattering
- 1m iron shield + detection energy threshold introduce a neutron energy cutoff (detection efficiency = 0 for $T_n < 50 \div 100$ MeV)

Muons: different background topologies

- Crossing muons not rejected by veto / crystals multiplicity
- Muons decaying inside the detector (missing prompt signal)
- Muons decaying inside the lead shielding
- Muons decaying between iron and veto
- Rare muon decays

Neutron energy spectrum @ sea-level 10-3 Differential Flux (cm⁻² s⁻¹ MeV⁻¹) 10-4 10-5 10-6 10-7 10-8 10⁻⁹ 10-10 100 101 102 103 104 Neutron Energy (MeV)

Preliminary MC simulations shows cosmogenic bck is $\simeq (100)^2$ events / year $_{17/25}$

 Considering flux, interaction cross sections and detection threshold the number of detected cosmic neutrinos is negligible

Neutrons:

- A high energy neutron can penetrate the shielding and interact inside the detector mimicking a χ-N scattering
- 1m iron shield + detection energy threshold introduce a neutron energy cutoff (detection efficiency = 0 for $T_n < 50 \div 100$ MeV)

Muons: different background topologies

- Crossing muons not rejected by veto / crystals multiplicity
- Muons decaying inside the detector (missing prompt signal)
- Muons decaying inside the lead shielding
- Muons decaying between iron and veto
- Rare muon decays

 Considering flux, interaction cross sections and detection threshold the number of detected cosmic neutrinos is negligible

Neutrons:

- A high energy neutron can penetrate the shielding and interact inside the detector mimicking a χ-N scattering
- 1m iron shield + detection energy threshold introduce a neutron energy cutoff (detection efficiency = 0 for $T_n < 50 \div 100$ MeV)

Muons: different background topologies

- Crossing muons not rejected by veto / crystals multiplicity
- Muons decaying inside the detector (missing prompt signal)
- Muons decaying inside the lead shielding
- Muons decaying between iron and veto
- Rare muon decays

19/25

BDX-proto measurement campaign at INFN-LNS (Catania)

- Measure cosmogenic background in a configuration similar to the final detector setup.
- Project results to the full BDX-detector and obtain background rate estimate
- Validate MC

Prototype setup:

- 1 Csl(Tl) crystal (BaBar endcup), 2 × MPPC readout (25 μm, 50 μm)
- Inner-veto layer: plastic scintillator + WLS-fibers/SiPM readout
- 5-cm lead layer
- External-veto layer: plastic scintillator + PMT readout

BDX-proto at LNS

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00000	000	●0	O
BDX@JLab: r	reach			

BDX can be a conclusive experiment to rule-out some Light Dark Matter scenarios

On-going effort to optimize the detector setup: minimize background and verify the effect on the signal

- Weak dependence on the dump-detector distance
- No sizeable effect by varying the detector footprint (with fixed active volume)
- No sizeable effect by varying the electron energy threshold: 500 MeV vs 50 MeV

On-going effort to optimize the detector setup: minimize background and verify the effect on the signal

- Weak dependence on the dump-detector distance
- No sizeable effect by varying the detector footprint (with fixed active volume)
- No sizeable effect by varying the electron energy threshold: 500 MeV vs 50 MeV

23 / 25

On-going effort to optimize the detector setup: minimize background and verify the effect on the signal

- Weak dependence on the dump-detector distance
- No sizeable effect by varying the detector footprint (with fixed active volume)
- No sizeable effect by varying the electron energy threshold: 500 MeV vs 50 MeV

Introduction	Experimental setup	Background	Experiment reach	Conclusions
000	00000	000	00	•
Conclusions				

- Dark matter in the MeV-to-GeV range is largely unexplored.
- Beam Dump eXperiment at JLab: search for light DM particles in the 10 ÷ 1000 MeV mass range
 - High intensity (O(10^{21}-10^{22} \ {\rm EOT/year}), high energy (11 \ {\rm GeV}) e^- beam
 - Detector: CsI(TI) calorimeter + 2-layers active veto + shielding. Can be assembled in reduced time and reduced cost, by re-using BaBar crystals
- Within 1 year, BDX can rule-out some Light Dark Matter scenarios
- Current experiment status:
 - Lol submitted to JLab PAC (2014): positive feedback, preparation of a full Proposal undergoing
 - Interesting opportunities for a phase-1 run @ other facilities
 - Dedicated cosmogenic background measurements @ LNS-CT

Backup slides

χ kinematics in the beam-dump

