LDMX -- Light Dark Matter eXperiment

Owen Colegrove, Josh Hildbrand, Joe Incandela, Eder Izaguirre, Gordan Krnjaic, Jeremiah Mans, Takashi Maruyama, Tim Nelson, Philip Schuster, Natalia Toro
Cartoon Guide to LDMX

- **Signal definition is a low energy, moderate p_T electron and an otherwise empty calorimeter**
 - Recoil p_T between ~ 80 MeV and 800 MeV
 - Goal of $10^{15} - 10^{16}$ EOT
Potential Sensitivity

$y = \varepsilon^2 \alpha_D (m_\chi/m_A)^4$

$LHC@CERN$

10^{-4}

10^{-5}

10^{-6}

10^{-7}

10^{-8}

10^{-9}

10^{-10}

10^{-11}

10^{-12}

m_χ (MeV)

10^1 to 10^3

3×10^{16} electrons on 10% X_0 target

Adapted from PRL 115, 251301 by E. Izaguirre and G. Krijiac
“Easy” Backgrounds

• **~Non-interacting beam**
 - Straight high-momentum track, full-energy cluster colinear* with incoming electron

• **Hard-brem**
 - Low momentum track, could be scattered at high angle
 - Fate of the photon
 - EM-shower: energetic cluster in calorimeter colinear with incoming electron
 - Hadronic interaction: often multiple charged particles (p,K,π,μ), sometimes nastier...
Hard Backgrounds/Signals

- **Neutron (and K_L) backgrounds**
 - $\gamma p \rightarrow \pi^+ n$
 - $\sim 10^{-9}/\text{EOT}$ with forward π^+
 - $\sim 10^{-11}/\text{EOT}$ with forward n
 - $\gamma n \rightarrow n\bar{n}n$
 - $\sim 10^{-9}/\text{EOT}$

- **Pileup**
 - Background: “Medium” brems overlapping with 4 GeV electron shower
 - Signal: For ~ 1 GeV recoil electrons, overlap with 4 GeV primary electron
Requirements

- Dense, fast calorimeter able to separate multiple showers to allow high-intensity beam
 - Must also be radiation-hard
- Incoming (tagger) tracking to pinpoint photon impact position, reject off-momentum incoming particles
- Outgoing (recoil) tracking to measure recoil electron, identify closely-spaced charged particles
- MIP-sensitivity in calorimeter to identify photonuclear processes
Experiment Concept

- Low mass trackers in dipole field and fringe field: leverage experience/technology from HPS and NA62
- Silicon/tungsten calorimeter for good shower separation and high rate capability: based on developments for CMS HL-LHC endcap calorimeter
Tagging Tracker

- **Identify beam-energy electrons with extraordinary purity**
 - many layers over large lever arm in 1.5T field
 - low-mass construction in vacuum to minimize multiple scattering and production of secondaries
 - high S/N to minimize noise occupancy
 - fast readout, good time resolution to reduce physics occupancy

- **For low intensities, silicon microstrips may work (~HPS)**
 - 0.7% X0/layer
 - 2 ns time resolution/hit

- **Highest intensities motivate pixels similar to NA62**
 - \(\lessapprox 0.5\% \) X0/layer
 - microchannel CO\(_2\) cooling
 - 100\(\mu\)m \(\times\) 100\(\mu\)m pixels
 - \(\lessapprox 1\) ns time resolution
Recoil Tracker

• Measure E, pT of recoils, secondaries over large range in momentum and production angle in compact space
 - many layers over small lever arm in fringe field
 - low-mass construction in vacuum to minimize multiple scattering and production of secondaries
 - high S/N to minimizes noise occupancy
 - fast readout, good time resolution to reduce physics occupancy
 - readout must enable simple tracking in trigger, certainly for high intensities

• For low intensities, silicon microstrips may work
 - 0.7% X0/layer
 - 2 ns time resolution/hit

• Highest intensities and acceptance motivate pixels similar to NA62 for small layers closest to target
 - ≤0.5% X0/layer
 - microchannel CO2 cooling
 - 100μm × 100μm pixels
 - ≤1 ns time resolution
The CMS HL-LHC Endcap Calorimeter

- Modules consist of one or two hexagonal sensors with a copper/tungsten baseplate.
- Readout PCBs with integral readout ASICs glued on top and wirebonded down through holes in the PCB
- Copper cooling plates + CO$_2$ for heat removal
Performance of default design

- Default design
 - 10 layers with 0.65 X_0 spacing
 - 10 layers with 0.88 X_0 spacing
 - 8 layers with 1.25 X_0 spacing

- For low-energy electrons, using 0.65 X_0 for more layers may be appropriate

- MIP sensitivity, S/N starts at 14, should stay above 7 for 10^{16} EOT
Cluster Separation

- High-granularity in longitudinal shower development allows separation of closely-spaced showers by matching large amplitude signals at shower max with narrow signatures in the early layers.
Studies of Cluster Separation for LDMX

- **Study of separating a single 4 GeV electron from a 2-3 GeV bremsstrahlung photon plus a beam electron**
 - Hit counting and shower-shape variables are effective.

![Diagram showing 2000 MeV Photon with hit counting and shower-shape variables](image1)

![Geant4 Simulation showing normalized distribution of hits and containment radius](image2)
Potential of Timing

Simulation, backed by testbeam results, indicates that O(80 ps) timing should be possible for EM showers in the 2-4 GeV range.

- Provides additional handle to separate clusters at higher beam current, correct effects of.
- Depending on beam configuration (e.g., deterministic RF dilution), can use for associating clusters with incoming beam particles.

P. Meridiani et al, under preparation
DAQ and Trigger

- CMS FE-ASIC to produce 2x2 merged-cell trigger primitives (no TDC) at 40 MHz, full readout with TDC at 750 kHz
 - Total 5 Gbps link count < 600 for full detector
 - Operational mode for 5ns bunch spacing with ASIC designed for 25ns requires study

- Trigger algorithm required to drop rate to ~750 kHz
 - 10^{16} EOT in a year implies ~1 GHz
 - At low intensities, trigger may be possible by looking for events with less than 2 GeV in the calorimeter
 - At higher intensities, trigger will likely require input from either tagging tracker or recoil tracker
Status of the CMS HL-LHC Endcap R&D

- **Testbeam studies at FNAL in March and May 2016**
 - Production-candidate sensors with CALICE-type readout chip (low rate)
 - Results (preliminary!) are good for S/N and absence of anomalous signals

- **First full-scale FE-ASIC expected in 2017, much of readout chain technology already demonstrated**
Conclusion

- Physics potential for LDMX is very exciting
 - Target large range of thermal relic phase phase, possibility for study of characteristics of dark matter in the case of discovery

- Experiment is realistic based on technologies in use or under development for HL-LHC experiments

- More collaborators are welcome!