NA64

Search for dark sector physics in missing energy experiments

Dipanwita Banerjee, Paolo Crivelli, Andre Rubbia ETH, Zurich

On behalf of the NA64 collaboration

NA64 Experiment e A' Dark Sector

NA64 is a fixed target experiment combining the active beam dump technique with missing energy measurement searching for invisible decays of massive A' produced in the reaction $eZ \rightarrow eZA$ ' of electrons scattering off a nuclei (A,Z), with a mixing strength $10^{-5} < \varepsilon < 10^{-3}$ and masses $M_{A'} < 100$ MeV.

NA64 Experiment

For NA64 a beam of **100 GeV electrons** will be dumped against an ECAL, a sandwich of lead and scintillators (34 X_0), to produce massive A' through scattering with the heavy nuclei.

A typical signature for a signal will be **missing energy in the ECAL** and no activity in the the VETO and HCAL.

Background from hadrons, muons and low energy electrons must be rejected upstream.

NA64

D. Banerjee^h, Y. Chen ^h, P. Crivelli^h, E. Depero ^h, A.V. Dermenev^b, S.V. Donskov^e, R. Dusaev^f, F. Dubinin^c, A. Gardikiotis^d, S.N. Gninenko^{b1}, A.E. Karneyeu^b, M.M. Kirsanov^b, N.V. Krasnikov^b, V. Kromarenko^a, S.V. Kuleshov^g, V.E. Lyubovitskij^f, V. Lysan^a, V.A. Matveev^{a,b}, V. Mialkovskii^a, Yu.V. Mikhailov^e, V.D. Peshehonov ^a, V.A. Polyakov^e, A. Rubbia^h, V.D. Samoylenko^e, V. Tikhomirov^c, D. Tlisov^b, A.N. Toropin^b, B. Vasilishin^f, G. Vasquez Arenas^g, P. Ulloa ^g, and K. Zioutas^d

The P348 collaboration

^a Joint Institute for Nuclear Research, 141980 Dubna, Russia
^b Institute for Nuclear Research, Moscow 117312, Russia
^c Lebedev Physical Institute, Moscow 117312, Russia
^d Physics Department, University of Patras, Patras, Greece
^e State Scientific Center Institute for High Energy Physics of National Research Center 'Kurchatov Institute', 142281 Protvino, Russia
^f Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
^g Universidad T'ecnica Federico Santa Mar'ia, 2390123 Valpara'iso, Chile
^h ETH Zurich, Institute for Particle Physics, CH-8093 Zurich, Switzerland

- **December 2013:** proposal to SPSC
- April 2014: recommended for tests
- April 2014 March 2015: design production and delivery at CERN
- October 2015: 2 week test run
- February 2016: Proposal approved as a SPS experiment! P348 becomes NA64
- July 2016 October 2016: next two run of data taking

Search for A' —> invisible decay

Sígnature for A' production

GEANT4+code for A[^] emission in the

process of e-m shower development

SM events: $E_{ECAL} + E_{HCAL} = E_0$ **A' events**: $E_{ECAL} < E_0$; $E_{HCAL} = 0$

- Background due to Muons, Pions and low energy electrons must be rejected to free the signal region.
 - \rightarrow SR tagging of electrons for hadron and muon rejection.
 - \rightarrow Micromegas tracker for low energy electron suppression.

Dírect search for A'—> ínvísíble decay at CERN

- 3 main requirements:
 - clean mono-energetic electron beam of 100 GeV
 - e⁻ tagging with MM tracker and SR
 - 4π fully hermetic ECAL + HCAL

- Signature:
 - in: 100 GeV e-track.
 - < 50 GeV EM shower in ECAL
 - no energy in Veto + HCAL
 - Sensitivity ~ ϵ^2

e⁻tagging with SR photons

- Charged particles when accelerated radially (a⊥v, as in a magnetic field) emit electromagnetic radiation.
- The energy emitted $\Delta E \propto m^{-4}$.
 - Hadrons and muons emit almost no photons compared to electrons and can be suppressed.
 - BGO crystals are used to select events with such radiation.
 - B-field 1.4 T (max 1.8 T) for a 2 m magnet -100 GeV electrons —>
 - Suppression factor ~ 10⁻⁵ for 4 m magnet of 1.8 T field.
 - $<\!\!\Delta E\!\!> \sim 30 \text{ MeV}$
 - $E_{r^{min}} \sim 1 \text{ MeV}$; $n_r = 10$
 - (hω)r^c ~ 10 MeV

MM tracking spectrometer

- Micromegas detectors are two stage parallel plate avalanche chambers.
- Narrow amplification gap ~ 128 μm
- Wider drift gap ~ 3 mm.
- Charged particle drift towards the micro-mesh under an E-field of 0.6 kV/cm (HV1).
- Produces avalanche of secondary electrons under high amplification field ~ 50 kV/cm (HV2).
- Resistive XY modules of 250 µm pitch.

Spatial Resolution obtained with 3 MM modules of 250 μ m pitch ~ 100 μ m/co-ordinate for each module from data

MM tracking spectrometer

Micromegas XY modules to be used as tracker in the next beam time:

Resolution for 100 GeV electrons ~ 0.74 GeV from simulation (Geant4)

Summary of background for A'—>ínvísíble channel

Source	Expected level	Comment	
Beam contamination			
$-\pi$, p, μ reactions and	< 10 ⁻¹³ -10 ⁻¹²	Impurity < 1%	
- e ⁻ low energy tail due to bremss., π , μ decays in flight,	< 10 ⁻¹²	high precision MM tracker + e ⁻ SR photon tag	
Detector			
ECAL+HCAL energy resolution, hermeticity: holes, dead materials, cracks	<10 ⁻¹³	Full upstream coverage	
Physical			
-hadron electroproduction, e.g.	< 10 ⁻¹³	~10 mb x nonherm.	
- WI process: $e^{-}Z -> e^{-}Z \nu \nu$	< 10 ⁻¹³	textbook process, first observation?	
Total (conservative)	< 10 ⁻¹²		

Projected Sensítívíty

The discrepancy between the predicted and experimental values for the anomalous magnetic moment $(g-2)_{\mu}$ of the muon could be explained by the presence of an additional boson.

With 10^{10} accumulated events (possible to accumulate $5x10^{10}$ electrons in a month's run time) NA64 may completely exclude the still favoured parameter space by $(g-2)\mu$.

 Potentially can cover a much bigger region with enough accumulated statistic

Test Run 2015

Experiment Setup

H4 Beamline

- e⁻, I_{max} at 50 GeV
 In our experiment tuned to 100 GeV
- I_{max} ~ 10⁶ e⁻/spill.
- Spill length 4.8 sec
 - 1 spill every 14.8 sec
- ~10¹¹ e⁻/month.
- beam spot ~ 4 cm²
- hadron mixture < 1%

First Look B-field off Hcal energy VS Ecal energy hHCvsEC 139778 Entries Mean x 93.21 1.487 Mean y RMS x 24.35 RMS y 7.618 10^{4} 10^{3} 10^{2} 10 100 90 120 100 80 Hadrons Low energy e-EECAL' GEV Muons Bremss. Photons

SR tagging cut

Summary

The conceptual idea of NA64 is to search for dark sector physics in missing-energy events with an active beam dump experiment.

The test run 2015:

The capability of such an approach and background-free operation of the NA64 detector have been demonstrated for the first time.

The run 2016:

Further increase in efficiency and sensitivity over 2015 results is expected due to i) use of a larger magnetic field

ii) the ability of a high efficiency tagging of initial state (hadronic suppression) with SR detectors,

iii) precise measurement of the incoming electron momentum with the MM tracker, iv) and thus, rejection of all known backgrounds.

Runs >2016 :

Further increases in efficiency and other improvements are in development, including increased beam rate.

These results expand the reach of NA64.

Physics Prospects

Process	New Physics	Sensitivity	
1. $e^{-}Z \to e^{-}Z + E_{miss}$			1. On detection of narrow angle e+e- pairs from
 ◇ A´-> e+e⁻ ◇ A´-> invisible ◇ alps ◇ mQ 	Dark photons, Hidden sectors, $(g-2)_{\mu}$ new particles, milli-q	$10^{-4} < \varepsilon < 10^{-5}$ M _{A'} ~ sub-GeV e' < $10^{-5} - 10^{-7}$	 dark photon decays A.V. Dermenev, S.V. Donskov, S.N. Gninenko et al; IEEE Trans.Nucl.Sc. 62 (2015) 3283; arXiv:1503.05687[physics.ins-det] 2. The K_L invisible decays as a probe of new physics S.N. Gninenko and N.V. Krasnikov; Phys. Rev. D92 (2015) 034009; arXiv:1503.01595 [hep-ph] 3. Search for invisible decays of π0, η, η', K_S and K_L: A probe of new physics and test using the Bell-Steinberger relation S.N. Gninenko; Phys. Rev. D91 (2015) 015004; arXiv:1409.2288 [hep-ph] 4. Muon g-2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN S.N. Gninenko, N.V. Krasnikov, V.A. Matveev; Phys. Rev. D91 (2015) 095015;
2. μ^{-} Z -> μ^{-} Z + E_{miss}			
$ \begin{array}{c} \diamond \ \mathbf{Z}_{\mu} \rightarrow \nu \nu , \ \mu^{+} \mu^{-} \\ \diamond \ \mu \rightarrow \tau \end{array} $	$(g-2)_{\mu}$, gauged $L_{\mu}-L_{\tau}$, L-phobic boson Z_{μ} , LFV	α _μ <10 ⁻¹¹ -10 ⁻⁹ <10 ⁻⁹ -10 ⁻⁸ /μ	
3. $\pi(K)p \rightarrow M^0n \rightarrow E_{miss}$			
$ K_L \rightarrow invisible K_S \rightarrow invisible \pi^0, \eta, \eta \rightarrow invisible $	Bell-Steinberger Unitarity, CP, CPT , NHL, 2HDM,	~ 10 ⁻⁵ Br < 10 ⁻⁸ < 10 ⁻⁸ -10 ⁻⁷	
4. <i>pA -> X+ E_{miss}</i>			arXiV:1412.1400 [hep-ph]
♦ leptophobic X +h	~ GeV DM	<10 ⁻⁷ -10 ⁻⁸ /p	

Thank You !!