Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz

Dark Photon Searches at MAMI and MESA / Mainz

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could explain presently seen deviation of 3.6σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

Outline

- Visible Dark Photon searches at the existing MAMI accelerator
- Perspectives for future MESA accelerators
- Possibilities for Beam Dump Experiments at MESA and MAMI (?)

Dark Photon Searches at A1/MAMI

The Mainz Microtron MAMI

The Mainz Microtron MAMI

A1: High-Resolution Spectrometers

A1: High-Resolution Spectrometers

Low-Energy Electron Acceler. with high intensity suited for DP search

Bjorken, Esssig, Schuster, Toro (2009)

Signal processes

Low-Energy Electr. Acceler. with high Intensity suited for DP search

Bjorken, Esssig, Schuster, Toro (2009)

Results from A1

\rightarrow at time of publication most stringent limit ruling out major part of the parameter range motivated by (g-2)_µ

Results from A1

→ at time of publication most stringent limit ruling out major part of the parameter range motivated by $(g-2)_{\mu}$

Situation as of today

Dark Photon Search at MESA

Mainz Microtron MAMI

Mainz Energy-Recovering Superconducting Accelerator Recirculating ERL E_{max} = 155 MeV I_{max} > 1 mA (ERL) commissioning 2020

Mainz Energy-Recovering Superconducting Accelerator

Operation of a high-intensity ERL beam in conjunction with light internal target

High resolution spectrometers MAGIX:

- double arm
- compact design
- momentum resolution: Δp/p < 10⁻⁴
- acceptance: ±50 mrad
- GEM-based focal plane detectors
- Gas Jet or polarized T-shaped target

MAGIX Physics Progam

Electromagnetic Form Factors of the Nucleons Nucleon Polarizabilities Few Body Physics Nuclear Reactions with astrophysical Relevance **Searches for Particles of the Dark Sector** Klaus Hansen

Achim Denig

The MAGIX Spectrometers

Simple Design: Quadrupole + Dipole

- 200 MeV maximum momentum
- 90 MeV momentum acceptance @ 200 MeV

10⁻⁴ relative momentum resolution Assuming 50 µm resolution in the focal r

Finite-element simulations

 \bullet Assuming 50 μm resolution in the focal plane

The Focal Plane Detectors

2 Sensitive layers

- The first centered on the focal plane
- The second with a sizable lever arm to measure the angle
- 30 x 120 cm²

GEM Detectors

- 2D Strip readout
- 0.7% radiation length
- High rate capabilities
- Small TPC detector ???
- Aim for 50 μm resolution

Internal Gas Targets for MAGIX

barator

- Length (~ 30 cm)
- First prototype with mylar foil
- Can use polarized gases
- Estimated luminosity with polarized beam O(>> 10³² cm⁻² s⁻¹)

- Supersonic gas /cluster jet
- Higher gas density (10¹⁹/cm²)
- O(mm) target length
- Estimated luminosity *O(10³⁵ cm⁻² s⁻¹)* @ 10¹⁹/cm²
- Windowless !
- Ready in 2016 !

Dark Sector Searches at MAGIX

MAGIX / MESA

Model 1: Dark Photon coupling to SM particles

 \rightarrow parameter range motivated by Dark Photon relation to Dark Matter

Dark Sector Searches at MAGIX

 χ

Model 2: Dark Photon coupling to Dark Matter

- \rightarrow could still explain (g-2)_µ discrepancy
- → exploit excellent momentum resolution of MAGIX (proton recoil!)

 \rightarrow Main background: Virtual Compton scattering

$$\begin{array}{ccc} e+p \rightarrow e'+p+X \\ & \stackrel{\smile}{\mapsto} invisible \end{array}$$

$$e^{-}$$

$$m_{\gamma'}^2 = (e + p - e' - p')^2$$

Sensitivity at MAGIX currently calculated within a bachelor thesis (use of thin HVMAPS detectors for proton recoil under study)

Electron Scattering on Beam Dump \rightarrow Collimated pair of Dark Matter particles !

This existing beam dump is going to be the P2 beam dump

BDX @ MESA

Background situation

- FLUKA simulation of neutron background promising (~10¹¹ EOT)
- MESA running below pion production threshold → no neutrinos!

Testing competititve parameter range

But what about BDX at MAMI ?

Same intensity as MESA in extracted beam mode, but higher beam energy !!! 11 m underground !!!

BDX @ MAMI

BDX @ MAMI

- Standard operation of MAMI with 2,45 GHz microwave frequency
 → bad for TOF purpose for BDX
- Recently single bunch tests carried out at MAMI
- Findings:
 - Bunch spacing can be varied almost arbitrarily
 - Drop of intensity
 - 12 ns bunch spacing @ 20 µA immediately achieved
 - 100 ns bunch spacing @ 3µA possible
- These numbers are conservativ estimates (A PhD student is working on this)

Conclusions

- Competitive results achieved at A1/MAMI
- MESA will be operational ~2020
 Great opportunities for Dark Sector physics and beyond; Experiences from Dark Light / JLAB !
- Beam Dump Experiment at MESA and MAMI
 - 10²³ EOT parasitically to P2 data taking (0,155 GeV)
 - 10²² EOT in 3000 h of beam time (1,6 GeV)
 - Option to go for larger bunch spacing 12 ... 100 ns

Dedicated beam time for BDX measurement ?!

