New LHC Experiment: MilliQan

- Milli-charged particles \rightarrow massive, with electric charge $\sim 10^{-3}$ e
- Easy to add to SM: "dark U(1)" (with massless dark photon) kinetic mixing → dark fermion milli-charged under SM
- Currently weak direct limits for fermion mass > 100 MeV
- ~1 photo-electron observed per 1m long scintillator
- Require triple-incidence in time window
- Moving forward in CMS "drainage gallery"

Andy Haas

MilliQan Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DS}$$

$$\mathcal{L}_{DS} = -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} + i\overline{\psi}'\left(\partial \!\!\!/ + ie'A' + iM_{\psi'}\right)\psi' - \frac{\kappa}{2}A'_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{L}_{DS} = -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} + i\overline{\psi}'\left(\partial \!\!\!/ + ie'A' + i\kappa e'B' + iM_{\psi'}\right)\psi'$$

- Let us assume that the DS has at least one Abelian gauge group, U_{DS}(1)
 Consisting of a massless dark boson A'_μ, and a dark fermion ψ' with charge e' and field strength A'_{μν} = ∂_μA'_ν ∂_νA'_μ
 Small kinetic mixing with the SM hypercharge (B_{μν}) and strength κ << 1
 - A gauge transformation $(A'_{\mu} \rightarrow A'_{\mu} + \kappa B_{\mu})$ eliminates the kinetic mixing term, in favor of mixing between the dark fermion and the SM gauge boson
- The dark fermion, ψ', interacts with the SM γ(Z) with charge κe' cos θ_w(sin θ_w) and has mass M_{ψ'} = M_{mCP}
 Note that ψ' is not, itself, a candidate for THE dark matter

MilliQan Collaboration

- Members of CMS, ATLAS, and "theorists"
- Currently 6 Pls

Austin Ball,¹ Jim Brooke,² Claudio Campagnari,³ Albert De Roeck,¹ Brian Francis,⁴ Martin Gastal,¹ Frank Golf,³ Joel Goldstein,² Andy Haas,⁵ Christopher S. Hill,⁴ Eder Izaguirre,⁶ Benjamin Kaplan,⁵ Gabriel Magill,^{7,6} Bennett Marsh,³ David Miller,⁸ Theo Prins,¹ Harry Shakeshaft,¹ David Stuart,³ Max Swiatlowski,⁸ and Itay Yavin^{7,6}

 $^{1}CERN$

²University of Bristol ³University of California, Santa Barbara ⁴The Ohio State University ⁵New York University ⁶Perimeter Institute for Theoretical Physics ⁷McMaster University ⁸University of Chicago

MilliQan Site

• "Drainage Gallery" - an interlocked tunnel above CMS Point 5

Beam backgrounds shielded by 14m of rock

30m from interaction point

Small angle from vertical

MilliQan Detector

 Array of plastics scintillators and PMTs, see single photoelectrons from traversing mCPs

The Scintillator

- A MIP with Q = 1e deposits ~ 2 MeV/cm in a material with a density of 1 g/cm³
- For a plastic scintillator, energy deposits result in $\sim 10^4$ photons / MeV
- Putting it together, 2×10^6 photons would be liberated in a 1m long bar

The PMT

- On average 1/3 of photons successfully hit the PMT
- The quantum efficiency of the PMT is ${\sim}25\%$
- Thus, the overall efficiency is 10%, i.e. one photo electron (PE) for every 10 liberated photons

mCP's

- The deposited energy is proportional to Q^2
- For a mCP with $Q = 2.2 \times 10^{-3} e$, we expect 1 PE per bar

MilliQan Trigger and Readout

- Low noise
 (~0.7 mV RMS)
- Full pulse shape
- Easily observe single PE's
- Good time resolution (~few ns)

000

Hardware Overview (CAEN V1743):

- 16 analog read-out channels, continuously sampled at 3.2 GS/s into a 1024 cell ring
- Programmable trigger logic, including an external trigger
- Both and internal clock and an external one (for sync-ing multiple boards to the same clock)
- Equipped with both VME and Optical Link interfaces
- Cost per channel is about \$400

Andy Haas

MilliQan Simulation and Sensitivity

- Full G4 simulation, including magnetic field of CMS
- Sensitivity agrees with earlier estimates

Background is random dark pulses: O(10) events/year

Andy Haas

MilliQan Plan / Schedule

- Initial studies / simulations / sensitivity estimates
- Arrangements with CMS and site studies
- Expression of Interest drafted, collaboration formed
- Aim to commission a test slice at the P5 site during 2016 end-of-year shutdown
- Take test data during 2017-18
- Build full detector in 2018
- Install full detector at P5 site in 2020-22 shutdown
- Take 300/fb of data during RunIII in 2022-25
- Discover mCP :)