# PROTOPHOBIC <sup>8</sup>Be TRANSITION

EVIDENCE FOR A NEW 17 MEV BOSON

# Flip Tanedo UCI

arXiv:1604.07411 & work in progress SLAC Dark Sectors 2016 (28 — 30 April)

with

Jonathan Feng, Bart Fornal, Susan Gardner, Iftah Galon, Jordan Smolinsky, & Tim Tait













1

## A 6.8σ nuclear transition anomaly

PRL **116,** 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

#### Observation of Anomalous Internal Pair Creation in <sup>8</sup>Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,\* M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

Nikhef National Institute for Subatomic

CERN, CH-1211 Geneva 23, Switzerland and Insti P.O. Box (Received 7 A not have a nuclear physics related origin.

The deviation observed at the bombarding energy of  $E_p = 1.10$  MeV and at  $\Theta \approx 140^\circ$  has a significance of 6.8 standard deviations, corresponding to a background fluctuation probability of  $5.6 \times 10^{-12}$ . On resonance, the M1 contribution should be even larger, so the background

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV  $(J^{\pi}=1^+,\,T=1)$  state  $\rightarrow$  ground state  $(J^{\pi}=0^+,\,T=0)$  and the isoscalar magnetic dipole 18.15 MeV  $(J^{\pi}=1^+,\,T=0)$  state  $\rightarrow$  ground state transitions in  $^8$ Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of  $> 5\sigma$ . This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of  $16.70 \pm 0.35 (\text{stat}) \pm 0.5 (\text{syst}) \, \text{MeV}/c^2$  and  $J^{\pi}=1^+$  was created.

DOI: 10.1103/PhysRevLett.116.042501

#### 8-Beryllium Levels

 $J^{\pi};T$ 

E\*(MeV)



many other states not shown





Savage et al. Phys. Rev. D37 (1987) 1134

#### **Experiment & interpretation**



FT, based on Gulyás et al. (1504.00489)



#### A 6.8σ anomaly: two measurements





Invariant Mass, mee [MeV]

Krasznahorkay et al. Phys. Rev. Lett 116 (2016) 042501

#### Sanity Checks

- 1. Bump, not monotonically decreasing background
- 2. Opening angle and invariant mass agree (17 MeV)
- 3. Bump disappears off resonance not interference with other decays
- 4. Bump disappears for asymmetric energies consistent with kinematics for on-shell particle
- 5. Large energy splitting, wouldn't see in other nuclei

#### Not a dark Higgs

 $J^{\pi};T$   $E^*(MeV)$ 

ANGULAR MOMENTUM

$$\ell = 1$$

PARITY

$$P = (-)^{\ell} P_{\text{Be}} P_X$$

Decay is forbidden up to parity violation



#### Not an axion-like particle



Hewett et al. "Fundamental Physics at the Intensity Frontier" 1205.2671

#### Not your mother's dark photon

 $\varepsilon \approx 0.011$ 

Proposal: separate u, d and e couplings



NA46/2 1504.00607

### $\pi^0$ -phobia = $p^+$ -phobia

To avoid NA46/2, prohibit  $\pi^0$  decay to  $X\gamma$ 



FROM QUARK CONTENT

$$Q_u Q_u' - Q_d Q_d' = 0$$
$$Q_d' = -2Q_u'$$



FROM CHIRAL PERT. THEORY

$$N = \binom{p}{n}$$

For spin-1

#### **Production and Decay**

$$\frac{\operatorname{Br}(^{8}\operatorname{Be}^{*} \to {}^{8}\operatorname{Be}X)}{\operatorname{Br}(^{8}\operatorname{Be}^{*} \to {}^{8}\operatorname{Be}\gamma)} = (\varepsilon_{p} + \varepsilon_{n})^{2} \frac{|\vec{p}_{X}|^{3}}{|\vec{p}_{\gamma}|^{3}} \approx 5.6 \times 10^{-6}$$

$$= (\varepsilon_n + \varepsilon_n)^2 \frac{|\vec{p}_X|^3}{|\vec{p}_X|^3}$$

$$\frac{|\vec{p}_X|^3}{|\vec{p}_\gamma|^3} \approx 5.6 \times 10^{-6}$$



DECAY

$$\varepsilon_e \gtrsim 1.4 \times 10^{-5}$$



"Dark photon" with separate couplings

$$g_i \equiv \varepsilon_i e$$

### Production (quark) couplings



#### Decay (lepton) couplings



#### Future experiments









# UCI IPC















Extra Slides

#### Internal Pair Conversion



Nuclear de-excitation by off-shell photon



Gulyás et al. NIM 1504.00489

#### A 6.8σ anomaly: opening angle



Krasznahorkay et al. Phys. Rev. Lett 116 (2016) 042501

#### Decays



Mixing with E1 transition

Krasznahorkay et al. Phys. Rev. Lett 116 (2016) 042501



## ATOMKI Pair Spectrometer



from A.J. Krasznahorkay; slideplayer.com/slide/6112261/

### Significance

The deviation observed at the bombarding energy of  $E_p = 1.10$  MeV and at  $\Theta \approx 140^\circ$  has a significance of 6.8 standard deviations, corresponding to a background fluctuation probability of  $5.6 \times 10^{-12}$ . On resonance, the M1 contribution should be even larger, so the background should decrease faster than in other cases, which would make the deviation even larger and more significant.

#### Pre-History: Extinct <sup>8</sup>Be Anomaly



a) yield of pairs b) 2 yield of pairs / IPC broad excess likely E1 pollution 20 40 60 80 100 120 140 correlation angle ω (degrees)

<sup>12</sup>C E1 transition

<sup>8</sup>Be (17.6 MeV) M1 transition excluded by ATOMKI study

de Boer et al. Phys. Lett. B388 (1996) 235

