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CURRENT STATUS

DIRECT DETECTION GOLD STANDARD

▸ Nuclear recoil experiments; basis of enormous 
progress in direct detection
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013



CURRENT STATUS

NUCLEAR RECOILS

▸ Kinematic penalty when DM mass drops below nucleus 
mass

ED =
q2

2mT
q
max

= 2mXv

ED & eV $ mX = 300 MeV

Ekin & 300 eVeven though



CURRENT STATUS

NEXT UP: ELECTRON

▸ More bang for the buck if DM lighter than 1 GeV 

▸ Allows to extract all of DM kinetic energy for DM MeV 
and heavier

ED =
q2

2mT
q
max

= 2mXv

ED & eV $ mX = 1 MeV



CURRENT STATUS

ELECTRONS IN MATERIALS

▸ In insulators, like xenon 

▸ In semi-conductors, like Ge, Si

Tightly bound; ionize for signal

Valence electrons become conducting; presence of collective 
modes

3

of outgoing electrons are found by numerically solving
the radial Schrödinger equation with a central potential
Z
e↵

(r)/r. Z
e↵

(r) is determined from the initial electron
wavefunction, assuming it to be a bound state of the same
central potential. We evaluate the form-factors numeri-
cally, cutting o↵ the sum at large l0, L once it converges.
Only the ionization rates of the 3 outermost shells (5p,
5s, and 4d, with binding energies of 12.4, 25.7, and 75.6
eV, respectively) are found to be relevant.

The energy transferred to the primary ionized electron
by the initial scattering process is ultimately distributed
into a number of (observable) electrons, n

e

, (unobserved)
scintillation photons, n

�

, and heat. To calculate n
e

, we
use a probabilistic model based on a combined theoreti-
cal and empirical understanding of the electron yield of
higher-energy electronic recoils. Absorption of the pri-
mary electron energy creates a number of ions, N

i

, and
a number of excited atoms, N

ex

, whose initial ratio is
determined to be N

ex

/N
i

⇡ 0.2 over a wide range of ener-
gies above a keV [18, 19]. Electron–ion recombination ap-
pears well-described by a modified Thomas-Imel recombi-
nation model [20, 21], which suggests that the fraction of
ions that recombine, f

R

, is essentially zero at low energy,
resulting in n

e

= N
i

and n
�

= N
ex

. The fraction, f
e

,
of initial quanta observed as electrons is therefore given
by f

e

= (1 � f
R

)(1 + N
ex

/N
i

)�1 ⇡ 0.83 [21]. The total
number of quanta, n, is observed to behave, at higher
energy, as n = E

er

/W , where E
er

is the outgoing energy
of the initial scattered electron and W = 13.8 eV is the
average energy required to create a single quanta [23].
As with f

R

and N
ex

/N
i

, W is only well measured at en-
ergies higher than those of interest to us, and thus adds
to the theoretical uncertainty in the predicted rates. We
use N

ex

/N
i

= 0.2, f
R

= 0 and W = 13.8 eV to give
central limits, and to illustrate the uncertainty we scan
over the ranges 0 < f

R

< 0.2, 0.1 < N
ex

/N
i

< 0.3,
and 12.4 < W < 16 eV. The chosen ranges for W and
N

ex

/N
i

are reasonable considering the available data
[9, 18, 19, 22]. The chosen range for f

R

is conserva-
tive considering the fit of the Thomas-Imel model to low-
energy electron-recoil data [20].

We extend this model to DM-induced ionization as fol-
lows. We calculate the di↵erential single-electron ion-
ization rate following Eqs. (1–3). We assume the scat-
tering of this primary electron creates a further n(1) =
Floor(E

er

/W ) quanta. In addition, for ionization of the
next-to-outer 5s and 4d shells, we assume that the pho-
ton associated with the de-excitation of the 5p-shell elec-
tron, with energy 13.3 or 63.1 eV, can photoionize, cre-
ating another n(2) = 0 (1) or 4 quanta, respectively, for
W > 13.3 eV (< 13.3 eV). The total number of detected
electrons is thus n

e

= n0

e

+ n00

e

, where n0

e

represents the
primary electron and is thus 0 or 1 with probability f

R

or (1 � f
R

), respectively, and n00

e

follows a binomial dis-
tribution with n(1) + n(2) trials and success probability
f
e

. This procedure is intended to reasonably approxi-
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FIG. 2: Top: Expected signal rates for 1-, 2-, and 3-electron
events for a DM candidate with �e = 10�36 cm2 and FDM = 1.
Widths indicate theoretical uncertainty (see text). Bottom:
90% CL limit on the DM–electron scattering cross section
�e (black line). Here the interaction is assumed to be in-
dependent of momentum transfer (FDM = 1). The dashed
lines show the individual limits set by the number of events
in which 1, 2, or 3 electrons were observed in the XENON10
data set, with gray bands indicating the theoretical uncer-
tainty. The light green region indicates the previously allowed
parameter space for DM coupled through a massive hidden
photon (taken from [2]).

mate the detailed microscopic scattering processes, but
presents another O(1) source of theoretical uncertainty.
The 1-, 2-, and 3-electron rates as a function of DM mass
for a fixed cross section and F

DM

= 1 are shown in Fig. 2
(top). The width of the bands arises from scanning over
f
R

, N
ex

/N
i

and W , as described above, and illustrates
the theoretical uncertainty.

RESULTS. Fig. 2 (bottom) shows the exclusion limit in
the m

DM

-�
e

plane based on the upper limits for 1-, 2-,
and 3-electrons rates in the XENON10 data set (dashed
lines), and the central limit (black line), corresponding
to the best limit at each mass. The gray bands show the
theoretical uncertainty, as described above. This bound
applies to DM candidates whose non-relativistic inter-
action with electrons is momentum-transfer independent
(F

DM

= 1). For DM masses larger than ⇠15MeV, the
bound is dominated by events with 2 or 3 electrons, due
to the small number of such events observed in the data
set. For smaller masses, the energy available is insu�-
cient to ionize multiple electrons, and the bound is set
by the number of single-electron events. The light green
shaded region shows the parameter space spanned by

Prospects for Upcoming DM–Electron Scattering Searches
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Figure 1. Selected near-term projections for the
DAMIC (green curves) and SuperCDMS-silicon (dark
red curves) experiments, for different ionization thresh-
olds and (background-free) exposures, as indicated. Solid
curves show the 95% C.L. exclusion reach from sim-
ple counting searches, while dashed curves show the
5�-discovery reach from annual modulation searches.
The gray shaded region shows the current XENON10
bound [31], while the shaded green region shows the es-
timated (much weaker) bound from 2012 DAMIC data
with a ⇠11-electron-hole pair threshold. The projections
for SuperCDMS-germanium (not shown) are comparable
to silicon. See §6.5 for more details. The three plots show
results for the different indicated DM form factors, corre-
sponding to different DM models.

expands on the previous calculation in [9]. Higher recoil energies for the scattered electron allow
a larger number of additional electron-hole pairs to be promoted via secondary scattering. Using
a semi-empirical understanding of these secondary scattering processes, we convert our calculated
differential event rate to an estimated event rate as a function of the number of observed electron-hole
pairs. These results will allow several experimental collaborations, such as DAMIC and SuperCDMS,
to calculate their projected sensitivity to the DM-electron scattering cross-section, given their specific
experimental setups and thresholds. It will also allow them to derive limits on this cross section in the
absence of a signal, or the preferred cross section value should there be a signal, in forthcoming data.

– 4 –
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P. Sorensen et al 1206.2644



SUPERCONDUCTORS

COOPER PAIRS

▸ Smaller gap  

▸ = more sensitivity to environmental noise 

▸ = more sensitivity to light dark matter

Hochberg, Zhao, KZ 1504.07237



SUPERCONDUCTORS

RATES AND CONSTRAINTS

Hochberg, Zhao, KZ 1504.07237
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FIG. 2: Left: Upper bounds on direct detection cross section for light dark matter scattering o↵ electrons, for very light
mediators. Constraints arise from stellar cooling processes [20, 21], bullet-cluster and halo shapes [22–26], as well as kinetic
decoupling during recombination epoch [28]. Right: Direct detection cross section between light dark matter and electrons,
for several benchmarks of heavy mediators. These are A: m� = 1 MeV, ge = 10�5e, ↵X = 0.1; B: m� = 10 MeV, ge = 10�5e,
↵X = 0.1; and C: m� = 100 MeV, ge = 10�4e, ↵ = 0.1. These depicted parameters obey all terrestrial and astrophysical
constraints, though sub-MeV DM interacting with SM through a massive mediator may be strongly constrained by BBN; see
text for details. The Xenon10 electron-ionization data bounds [34] are plotted in thin dashed gray. In both panels, the black
solid (dashed) curve depicts the sensitivity reach of the proposed superconducting detectors, for a detector sensitivity to recoil
energies between 1 meV�1 eV (10 meV�10 eV), with a kg·year of exposure. For comparison, the gray dot-dashed curve depicts
the expected sensitivity utilizing electron ionization in a germanium target as obtained in Ref. [10].

kink in the colored curves as mX increases arises when
the stellar constraints evolve from cooling dominated by
direct emission of � to the Higgstrahlung process (fac-
toring in self-interaction constraints on ↵X at each mX).
For mediator masses between an eV and ⇠ 10 keV, di-
rect detection cross sections are low on account of stellar
emission constraints. These constraints are released as
the mediators become more massive than the tempera-
ture of the star; supernova constraints instead become
relevant, though trapping removes them for su�ciently
large couplings.

Moving to heavy mediators, we focus on m� ⇠> MeV.
A plethora of constraints exists in the literature for this
mass range, see e.g. [29–32] in the context of kinetically
mixed hidden photons. In the right panel of Fig. 2, we
select several benchmark points, labeled A-C, that sur-
vive all terrestrial (e.g. beam dump) and stellar cooling
constraints, and plot the resulting direct detection cross
section of Eq. (3), �̃heavy

DD

. Large couplings to electrons
ge ⇠> 10�6 are possible despite stellar constraints due
to trapping e↵ects, and beam dump constraints may be
evaded by decaying to additional particles in the dark
sector. These statements hold regardless of the vec-
tor/scalar nature of the heavy mediator. However, for
values of ↵X and ge as large as these benchmark points,
DM and/or the mediator will be brought into thermal
equilibrium with the SM plasma. The chief constraint on
these models is thus BBN and Planck limits on the num-
ber of relativistic species in equilibrium (see e.g. [33]).

The Planck constraints can be evaded; for instance cou-
pling to �/e through the time that the DM becomes
non-relativistic will act to reduce the e↵ective number
of neutrinos at CMB epoch. On the other hand, dur-
ing BBN, the helium fraction constrains the Hubble pa-
rameter, which is sensitive to all thermalized degrees of
freedom. DM must then be either a real scalar or heav-
ier than a few hundred keV in such simple models [33].
It follows that part of the depicted curves of benchmarks
A-C in the low-mass region may not be viable; a detailed
study of the viable parameter space is underway [18]. For
completeness, we show the Xenon10 electron-ionization
bounds [34] in the thin gray dashed curve. (The Xenon10
bounds on light mediators are not depicted in the left
panel of Fig. 2 as they are orders of magnitude weaker
than the parameter space shown.)
For comparison, we show the expected sensitivity using

electron-ionization techniques with a germanium target
as obtained in Ref. [10], translating their result into �̃

DD

of Eq. (3). These results are depicted by the dot-dashed
gray curves in Fig. 2 for both the light (left panel) and
heavy (right panel) mediator cases. For heavy media-
tors and mX larger than a few hundred keV, our de-
tection method is less sensitive than the projected one
using germanium, while for lighter mX , where electron
ionization methods lose sensitivity, the superconducting
devices win. (Indeed, this comparison between the de-
tection methods is our main aim in presenting the right
panel of Fig. 2.) In contrast, light mediators highlight the

Satisfy all astrophysical, cosmological, 
terrestrial constraints 

Medium effects on mediator not applied

Scalar DM + Scalar Mediators 

OR 

Lift BBN constraints



SUPERCONDUCTORS

NEW REACH

▸ Stay tuned for helium!
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Figure 9. Top: Upper bounds on the direct detection cross section, Eq. (5.18), for light DM scattering
o↵ electrons via a kinetically mixed hidden photon, which obtains its mass via the Stuckelberg mechanism,
for a variety of di↵erent mediator masses (solid colored curves). Constraints include stellar cooling [84],
CMB [88], CROWS [86, 87], measurements of Coulomb’s law [88], decoupling at recombination [64, 65]
and self-interactions [56]. Bottom: Direct detection cross section between light DM and electrons, for
several benchmarks of heavy mediators (same as in Fig. 5). These are A: m� = 1 MeV, ge = 10�5e,
↵X = 0.1; B: m� = 10 MeV, ge = 10�5e, ↵X = 0.1; and C: m� = 100 MeV, ge = 10�4e, ↵X = 0.1. These
depicted parameters obey all terrestrial and astrophysical constraints, though sub-MeV DM interacting
with SM through a massive mediator may be strongly constrained by BBN; see text for details. In both

panels, the Xenon10 electron-ionization data bounds [77] are shown in thin dashed gray. The black solid
(dashed) curve depicts the sensitivity reach of the proposed superconducting aluminum devices, for a
detector sensitivity to recoil energies between 1 meV�1 eV (10 meV�10 eV), with a kg·year of exposure.
For comparison, the gray dot-dashed curve depicts the expected sensitivity utilizing electron ionization
in a germanium target as obtained in Ref. [22].
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SUPERCONDUCTORS

ABSORPTION
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FIG. 2. Estimated sensitivity of an aluminum superconductor target for 1-kg-year (thick solid blue) and 1-kg-day (thin
solid blue) exposures, for absorption of dark photon relic dark matter. For comparison, we show solar and horizontal branch
constraints for the Stueckelberg (shaded red) and Higgs cases (dashed green) [17]; Xenon10 bounds (shaded purple) [18]; and
the projected reach for an LC circuit experiment (shaded gray) [19].

case, the bounds depend on the charge of the dark Higgs
under a dark U(1) (denoted e0, with e0  constrained),
while in the latter case there is no such dependence; see
Refs. [17, 24] for details. These constraints are depicted
in Fig. 2, marked as ‘Higgs’ and ‘Stueckelberg’ accord-
ingly.

A recent proposal to detect the hidden photon field
with resonant LC circuits [19] estimates strong sensitivity
below 3 meV (and extending as far down as 10�12 eV).
These projections are shown in the gray shaded region of
Fig. 2. A multiplexed version of this experiment could
potentially reach mixings of  ⇠ 10�16 for meV masses.

We learn that an aluminum superconductor target
with a kg-year exposure can be more sensitive than stel-
lar constraints over the entire mass range of interest,
from 1 meV to 1 eV, if the dark photon obtains its
mass via a Stueckelberg mechanism. If a dark Higgs is
present, superconducting targets with a kg-year exposure
are stronger probes than horizontal branch stars for vec-
tor masses heavier than about 20 meV, for e0 ⇠ 0.1. Since
stellar emission depends on the stellar environment and
as such is model-dependent, direct detection provides a
strong orthogonal probe to such constraints.

B. Pseudoscalars

We now proceed to absorption of pseudoscalars cou-
pling to electrons:

Ce

2fa
(@µa)ē�µ�5e . (16)

For DFSZ axions, Ce = 1

3

cos2 �, and for KSVZ ax-
ions where the electron-coupling is only loop-induced,
Ce / ↵2. We parameterize our reach in terms of an
e↵ective electron coupling, gaee = Ceme/fa. Compar-
ing the matrix element squared to the case of a photon,
we find similar ~Q-dependence (see Appendix B), and the
DM absorption rate is

R = 3
m2

a

4m2

e

g2

aee

e2

�
1

⇢
DM

m
DM

1

⇢
. (17)

The expected reach into the parameter space of pseu-
doscalar DM via absorption on an Aluminum supercon-
ducting target is shown in Fig. 3. Stellar constraints
on axions are shown as well — the pseudoscalar-electron
coupling allows for emission of light pseudoscalars in the
mass range of interest in electron-dense environments
such as white dwarfs (denoted ‘WD’). The cooling curves
of white dwarfs give the strongest constraints on the
electron coupling over our entire mass range [25]. In
fact, some of the data are in favor of a new weakly
coupled particle [26]. For completeness, we also show
the relation between mass and fa for the QCD axion,
(0.60 meV/ma) = (fa/1010 GeV), taking as an upper
value Ce = 1/3.

Given an electron coupling, a loop-induced coupling of
the pseudoscalar to photons arises,

↵

8⇡

gaee

me
aFµ⌫ F̃µ⌫ . (18)

If the pseudoscalar couples to other charged particles,
this photon coupling will be modified by an O(1) factor.
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FIG. 3. Estimated sensitivity of an aluminum superconductor target for 1-kg-year (thick solid blue) and 1-kg-day (thin solid
blue) exposures, for absorption of axion relic dark matter. For comparison, we also show stellar emission constraints from white
dwarfs (WD), as well as the QCD axion relation (shaded pale pink). Dashed lines show constraints from a loop-induced photon
coupling given by Eq. (18), which assumes the pseudoscalar does not couple to other charged particles. These constraints are
taken from studies that assume only a photon-coupling.

Assuming only the induced photon coupling above, we
can place constraints on gaee from CAST [27], cooling
of white dwarves and red giants, and the a ! �� de-
cay time [21]. As is the case for CAST, while cutting
into the QCD axion parameter space, with a kg-year ex-
posure, stellar constraints remain stronger. Supercon-
ductors will be a strong alternative, however, to model-
dependent stellar constraints.

[TL: To be included in plot: IAXO projections,
ADMX limits.]

C. Scalars

We now consider scalar DM X coupling to electrons
via

L � d�ee

p
4⇡

me

Mpl
�ēe , (19)

where we follow the normalization of Refs. [28, 29]. The
matrix element for the scalar absorption di↵ers in ~Q-
dependence from the photon case, and is suppressed in
comparison by !2/| ~Q|2 ⇠> v2

F ⇠ 10�4; see Appendix B for
details. Performing the integration in Eq. (3) we compute
an e↵ective ⌧ to map into the Drude theory, and then
match onto the photon data of Fig. 1 to obtain the rate.

The projected sensitivity of a superconducting Alu-
minum target for scalar DM absorption is presented in
Fig. 4 for a kg·year exposure. For comparison, we present

the fifth-force constraints of Ref. [28], using the trans-
lation |↵

mod

| = (d�eeQe)2 where Qe ⇡ 1/4000 is the
fractional rest mass in electrons. The plotted constraint
for masses below 0.1 eV is more robust, while the con-
straints above 0.1 eV are meant to be more heuristic.
[TL: Explain.] For completeness, we also plot HB
cooling constraints, applying the limit in the Higgs case
g�ee < 1.3 ⇥ 10�14 and setting g�ee = d�ee

p
4⇡ me

Mpl
.

IV. CONCLUSIONS

We have explored the prospects of detecting ultralight
DM, with mass in the meV to eV range, via absorp-
tion in an aluminum superconductor. We find that even
with modest exposure, the aluminum superconductor is
particularly powerful for the case of vector DM, easily
superseding stellar constraints. In the case of an axion,
absorption on a superconducting target can also cut into
the QCD parameter space. Strikingly, this is true de-
spite the fact that the proposed detection method does
not make use of coherence e↵ects in the absorption pro-
cess.

In fact, the DM mass range accessible to a supercon-
conducting absorber is exactly the mass range where the
behavior of light bosonic DM transitions to that of a clas-
sical field, at masses of an eV. For masses well below this
range, experimental techniques can rely on the coherence
of the DM field to probe extremely small couplings. Our
method, however, does not require coherence of the DM

7

10�5 10�4 10�3 10�2 10�1 100 101 102

m� [eV]

104

106

108

1010

1012

1014

d �
ee

5F

5F

HB stars

1 kg-day

1 kg-yr

FIG. 4. Estimated sensitivity of an aluminum superconductor target for 1-kg-year (thick solid blue) and 1-kg-day (thin solid
blue) exposures, for absorption of scalar dark matter.

field. The DM signal is single-particle absorption, which
takes advantage of the superconductor sensitivity to an
electronic excitation with energy as low as ⇠ meV.
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Appendix A: Electrodynamics of solids

For an isotropic medium, the dielectric constant ✏̂ is
related to the complex index of refraction ñ and is given
in terms of the conductivity �̂,

✏̂ = ñ2 = 1 +
i�̂

!
, (A1)

where we assume Lorentz-Heaviside units. As described
in the text, we are working the local limit where the
transverse and longitudinal conductivities are equal, and
we give results only in this limit. The conductivity
is directly related to the in-medium polarization tensor
⇧µ⌫ = hJµJ⌫i,

⇧µ⌫(~q, !) = ⇧(!)
X

i=1,2

✏Tµ
i ✏T⇤⌫

i + ⇧(!)✏Lµ✏L⌫ (A2)

where ✏L, ✏T are longitudinal and transverse polarizations
vectors. As described in Section 5.2 and Appendix A of

Ref. [7], ⇧µ⌫ is related to the dielectric constant, and for
a non-magnetic medium,

(!2 � ~q2)(1 � ñ2) = ⇧L ,

!2(1 � ñ2) = ⇧T , (A3)

and in the local limit of q ⌧ ! the longitudinal and
transverse ⇧L and ⇧T can both be written as Eq. (6),

⇧(!) ⇡ �i�̂! . (A4)

For a given vector potential ~A, the EM fields are

~B(~q, !) = i~q ⇥ ~A(~q, !) (A5)

~E(~q, !) = i
!

c
~A(~q, !) � i~q�(~q, !) . (A6)

The longitudinal and transverse E-fields satisfy ~r⇥ ~E =
0 and ~r · E = 0, respectively, so in Coulomb gauge (~r ·
~A = 0) we have ~EL = �i~q� and ~ET = i!

c
~A.

Appendix B: Dark matter absorption details

Here we give further details regarding the computation
of the 2-to-2 process X(q) + e(k) ! e(k0) + �(Q) with a
phonon � in the final state for absorption of a photon or
vector, pseudoscalar and scalar DM X. Here q = (!, ~q) is
the 4-momentum of the incoming absorbed particle and
Q = (cs| ~Q|, ~Q) is the phonon 4-momentum.

Still paying for metals being shiny

Hochberg, LIN, KZ 1604.06800



HELIUM

AN INSULATING SUPERFLUID

▸ Helium! 

▸ Nuclear recoils, no. 

▸ MeV DM deposits at 
most meV of energy 

▸ However, displays 
collective behavior 
below 2.2K

ED =
q2

2mT
q
max

= 2mXv

Schutz, KZ 1604.xxxxx



HELIUM

AN INSULATING SUPERFLUID

▸ Does this help us with DM detection? 

▸ At first glance no -- collective modes simply have too 
low a speed of sound 

▸ Next glance -- yes!

ED ⇠ vXq

ED ⇠ csq

cs ⌧ vXvs

Schutz, KZ 1604.xxxxx



HELIUM

ROTONS/PHONONS

▸ Calculated and observed for ultra-cold neutrons

- 5 -

Calculation of the lifetime 

He use 2nd order perturbation theory to calculate the lifetime, 

i. e. we replace the "blob" in figure 2 by one phonon exchange : 

J2-
'[, 

We. will use "old-fashioned perturbation theory" which requires consideration 

of the following diagrams : 

o 
Interaction 

The interaction between neutrons and matter may be written as 

( II) 

where is the number density of nucleii with scattering length a in 

the matter. 

Follo.,ing Landau + Khalatnikov we write the number density of 

Helium as 
I 

t;r/J" + 
i'0;p. 

- 6 -

I 
where S1= equilibrium mass density of the liquid, and QD Oil-

..£'{ f .../;l 

We take the matrix element 

of V(?) between neutron plane \;ave states e 
-) -\ 

the usual creation-annihilation operators. 

--Vf /rf:-!.),r <[JVV'Jjl'): f J'r5{r) f- f 

. ->- -+ ->- ( 1 I' Q-:;' -;\3 \(1-)(-.') 
Putting Q = Pf - Pi and USlilg ) cf"r e ::: Pllj d Q 

we obtain from (12) and (13) 

(13) 

1/ 13 "- I {i!;' C; r1l ([ ..., T '«(1) "-\. "1), 1 
/1" [cri J (Q-]Jt-)+ c:t J (llf/: )(14) r ./l 1/ 3/J.- ).... c.. 0 

f vl,u L t;.., 
which is to be evaluated between phonon-occupation number eigenstates. 

Phonon-Phonon Interaction 

are 

We take the third order part of the hydrodynamic Hamiltonian as given 

by Landau + Khalatnikov. 

3 f 
r 

(15) 

.pi where) .- the fluctuating part.of the mass density is given by times 

the second term in (II). If ,;e define U",," -'?{ J 2, -] if (Maris) 

(16) 

( 17) 

- 5 -

Calculation of the lifetime 

He use 2nd order perturbation theory to calculate the lifetime, 

i. e. we replace the "blob" in figure 2 by one phonon exchange : 

J2-
'[, 

We. will use "old-fashioned perturbation theory" which requires consideration 

of the following diagrams : 

o 
Interaction 

The interaction between neutrons and matter may be written as 

( II) 

where is the number density of nucleii with scattering length a in 

the matter. 

Follo.,ing Landau + Khalatnikov we write the number density of 

Helium as 
I 

t;r/J" + 
i'0;p. 

Schutz, KZ 1604.xxxxx
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HELIUM

MULTI-EXCITATIONS

▸ Free helium atom in the final state mediated by off-
shell phonon 

▸ momentum-energy balance equations modified

2

from the properties of the homogeneous liquid, and e↵ec-
tively acts as a force constant. One can show that it is re-
lated to the frequency by !2

k

= ⇢0k
2�(k) and that the fre-

quency of perturbations is given by !
k

= k2/2mHeS(k),
where S(k) is the static structure factor, related to the
two-point correlation function of perturbations in the liq-
uid, m2

HeS(k) = h⇢
k

⇢�k

i. In this work, we use S(k) as
measured in [5] in units of the unperturbed number den-
sity, n0 = ⇢0/mHe. This function scales linearly with k
at small k (k . 1 keV), and levels o↵ to 1 at high k with
a prominent intermediate peak.

From the commutation relation between the density
and velocity [6], writing ⇢ and ~v in terms of the usual
creation and annihilation operators we find

⇢
~

k

= mHe

p
S(k)(a

~

k

� a†
�~

k

) (4)

~v
~

k

= � ~

k

2mHe

p
S(k)

(a
~

k

+ a†
�~

k

). (5)

Then expanding the Hamiltonian to the next (third) or-
der in perturbations, we find

H 0 =

Z
d3r

✓
1

2
~v · ⇢~v +

1

3!

��(⇢0)

�⇢0
⇢3
◆

, (6)

At small k, � = c2
s

/⇢0, and this term gives ��(⇢0)
�⇢0

=
c

2
s

⇢

2
0
(2u0�1), where u0 = ⇢0

cs

�cs
�⇢0

= 2.84, as measured by [7].

Note that the ⇢3 term does not grow with k once S(k)
asymptotes to 1, and is thus unimportant for energy de-
posits above approximately a meV. [KS: Still unsure
about this...]

�
�pi �pf

�q

�k1

�k2

He

FIG. 1. a placeholder

Multi-Excitation Scattering Rates. In order
to calculate the rate for DM downscattering from two-
excitation emission (illustrated in Figure 1), we need the
relevant vertices and Green’s function for the o↵-shell in-
termediate state. In our treatment, we follow the same
general procedure as [8], which computed the analogous
multi-excitation rates for neutron upscattering (the key
di↵erence being that neutron upscattering comes from
thermal phonons whereas in DM downscattering ather-
mal phonons are produced.)

The three-excitation vertex can be read o↵ from Equa-
tion (6). Meanwhile, for the interaction between the
helium nucleons and DM we will make use of the
Fermi pseudopotential for contact interactions, given by

V
XN

(r) = 2⇡a⇢(r)/(m
X

mHe), where where a is a scat-
tering length, related to the total cross-section 4⇡a2 =
�0. We will consider both massive and massless medi-
ators such that a picks up the momentum dependence
�0 = 16⇡↵

e

↵
X

m2
X

/(q2+m2
�

)2. Finally, the Green’s func-
tion for the momentum transfer generally has the form
G(!) = (! + mHec

2
s

)/(!2 � c2
s

q2); since v
X

� c
s

, the !
term dominates.

From these potentials, one can construct the scattering
rate for a single DM particle, � = hn

T

�vreli via Fermi’s
golden rule:

� =
V 4

(2⇡)11

Z
d3p

f

d3k1 d3k2 |hV3(q)G(!)V
XN

(q)i|2 (7)

⇥ �(3)
⇣
~q � ~k1 � ~k2

⌘
�

✓
! � 1

2mHe

✓
k2
1

S(k1)
� k2

2

S(k2)

◆◆
,

where we have used

|hV3(q)G(!)V
XN

(q)i| ' (2⇡)4a(q)S(q)
V

2
mHemX!

(8)

⇥
✓

(~k1·~k2)

4
p

S(k1)S(k2)
+ (2u0 � 1)m2

Hec
2
s

p
S(k1)S(k2)

◆
.

Three factors of V/(2⇡)3 come from the density of
states while an additional one comes from squaring the
momentum-conserving delta function that appears in the
three-excitation vertex (from the spatial integral). The
energy-conserving delta function is e↵ectively a selec-
tion rule. The angled brackets denote that we have
evaluated the appropriate sequence of operators between
second-quantized initial and final states

��0
~q

, 0
~

k1
, 0

~

k2

↵
and⌦

0
~q

, 1
~

k1
, 1

~

k2

��, respectively. Note that these are the appro-
priate initial and final states because we are specifically
interested in the production of athermal excitations. The
factors of 2 and 3! appearing in V3 have been absorbed
by the combinatorial labelling of momenta. In the limit
of ! ⇠ 1 meV, we reproduce the rate from [8].

This integral can be evaluated for a generic helium dis-
persion relation. Here we quote the result in the case that
the phonons are emitted back to back, ~k1 ⇡ �~k2 ⌘ ~k,
which is the necessary configuration when q ⌧ k, as is the
case for our scenario. Deviations from this approxima-
tion will have sub-percent e↵ects for DM scattering rate
in the keV-MeV mass range, owing to the small sound
speed of the fluid and the relatively high mass of helium
nuclei. In this simplified case, the analytic expressions
simplify substantially,

� =

Z
dk d3p

f

�(q)S(q)A(k)

(2⇡)3m2
Hem

2
X

!2
�

✓
! � k2

mHeS(k)

◆
(9)

where A(k) = k2(�k2/4S(k)+m2
Hec

2
s

(2u0�1)S(k))2 and
where �(q) takes into account the momentum dependence
of the cross section; for a massive mediator �(q) = �0,
while for the massless mediator case �(q) = �0 (qref/q)4

where qref = 10�3m
X

. The integral over k is readily
evaluated via composition with the delta function, �(!�
k2/mHeS(k)) = mHe

P
n

�(k � k
n

)/
��@

k

(k2/S(k))
k=kn

��,
where the roots of the delta function k

n

are functions
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1 1p2(k~co)=——g 5g, t+m5(co e(1—) e(m—)) .N2i (3.3)

It is instructive to understand the structure of the DOS.
The one-quasiparticle DOS diverges at the roton
minimum and maxon maximum. Therefore, we expect
that combinations of the above extrema to give large con-
tributions to the two-quasiparticle DOS and study them in
detail.
a. Two rotons. We consider two rotons on the roton

sphere as shown in Fig. 10(a) with center of mass momen-
tum k=1+m ( I

l
I
=

I m I
=k„, k, is the location of the

roton minimum) and total energy c0=2co„where co,
denotes the roton energy. As long as k remains finite
(+0) there is only one angle 8 for which k=1+m; name-
ly, that with cos8=k 1=k/2k„. If k=0, 8 can take any

tions in Gi have a significant effect on the energies of the
two-q~~asiparticle peaks.
In order to understand the origin of the various peaks

in this interval, we study the two-quasiparticle density of
states (DOS}defined as

p, (k,~) ~ —ln (3.4)

The results of the numerically calculated DOS are
shown in Fig. 11. We used the experimental dispersion
curve with a momentum cutoff such that l and m are
both less than 2.4 A ' [e(2.4 A ')=15.5 K]. The in-
clusion of states with higher momenta (greater than 2.4
A ') does not modify the pz(k, co) for co &24 K, but it will
of course alter the DOS for higher co. We can see that the
main peak is at the maxon plus roton energy co=22.5 K.
In Fig. 12 we present the matrix elements

value from 0 to ir. In this case, p2(k, co} diverges. In the
case k&0 (k &2k, ), however, the phase space is limited
and the two-roton DOS is finite at co =2co, .
b. Tue maxons. The analysis here is identical to the

two-roton case, i.e., for k=0 there is a singularity at
c0=2co, where co is the maxon energy, but for k&0
(k&2k; k is the maxon momentum) the DOS at
co=2' is finite.
c. One maxon plus one roton. If k, k—&k &k„+k

(i.e., 0.8 A '&k &3 A '), a simultaneous excitation of
one roton and one maxon can contribute to the two-
quasiparticle DOS in the vicinity of co=co„+co . There
are a lot of degenerate states which have the above energy.
We can demonstrate this as follows. We put a particle at
the roton minimum and another at the maxon peak, so we
create the state I

A ) = I k„,k ). Next we move the first
particle a little away from the roton minimum and at the
same time we let the maxon move to a neighboring state
so that the energy of the new two-particle state B [Fig.
10(b)] is the same as that of the state A. If
k,—k &k &k,+k, we can always choose the direc-
tions of the momenta of the new state to satisfy the
momentum conservation. Hence, there is a large (ulti-
mately infinite) number of two-quasiparticle states in the
neighborhood of co=co„+co . In fact, if one approxi-
mates the spectrum in the vicinity of the roton and maxon
by two parabolas, it is easy to show that there is a loga-
rithmic singularity in the two-quasiparticle DOS for
CO N~ +CO~:

0.8—

20

IO

CD

0.5
3~" 0.4
~OJ

0.3

oo
k(a )
(b)

Q. I

Q
(5 20 30

FIG. 10. {a) 1 and m are the momenta of the two-particles
on the roton sphere and k is their total momentum. {b) The
two two-quasiparticle states A and B that have the same energy.

FIG. 11. Two-quasipartiele density of states at various values
of k.
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HELIUM

HOW TO CALCULATE?

▸ Theory developed by Landau-Khalatnikov and 
Feynman-Cohen 

▸ Quantize the fluid Hamiltonian, like SHO

Schutz, KZ 1604.xxxxx

⇢~k = mHe

p
S(k)(a~k � a†

�~k
)

~v~k = �
~k

2mHe

p
S(k)

(a~k + a†
�~k

)

H0 =
1

2

X

k

⇣
⇢0v~kv�~k + �(k)⇢~k⇢�~k

⌘

!k = ⇢0k
2�(k)

m2
HeS(k) = h⇢k⇢�ki



HELIUM

RESULTS

Great potential!

Schutz, KZ 1604.xxxxx
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FIG. 2. 95% confidence level sensitivity expected with a kg-year exposure of superfluid helium. We show both two-excitation
processes in the superfluid (labeled SF) as well as ordinary nuclear recoils (labeled NR), with 1 meV (solid) and 10 meV
(dashed) energy resolution in the detectors. Also shown are benchmarks based on couplings that are consistent with current
limits. For the massive mediator, we assume ↵X = 10�5 for all three curves, while for the light mediator we set ↵X = 10�19.
The dotted line shows where the maximum momentum transfer starts to exceed the perturbativity criterion.

Rates and Constraints. The scattering rate for
individual DM particles producing back-to-back excita-
tions can now be converted to a DM detection rate R via

!
dR

d!
=

Z
dv

X

f
MB

(v
X

) !
d�

d!

⇢
X

⇢0mX

, (12)

where ⇢
X

is the local DM density 0.3 GeV/cm3, ⇢0 is
the density of liquid helium, and f

MB

is the Maxwell-
Boltzmann distribution of DM in the Milky Way halo,

f
MB

(v
X

) =
4⇡v2

X

e�v

2
X/v

2
0⇥(v

esc

� v
X

)�
erf(z) � 2ze�z

2/
p

⇡
�
⇡3/2v30

(13)

with z = v
esc

/v0 and where ⇥ denotes the Heaviside
step function. Here we take the root-mean-square veloc-
ity v0 to be 220 km/s and the escape velocity v

esc

to be
500 km/s. For both massive and light mediators, the rate
is peaked with increasing energy since the principal scal-
ing with ! for the two rates is !3 and !3/2, respectively.

Integrating over deposited energies, in Fig. 2 we show
the expected sensitivity of a 1 kg-year exposure of super-
fluid helium to a two-excitation process, assuming mini-
mum energy sensitivities of 1 meV and 10 meV. We also
show the expected constraints from ordinary nuclear re-
coils in the fluid with the same energy resolution. When
showing our results, we constrain �

p

in the case where
f
p

= 1 and f
n

= 0 to correspond to a kinetically-mixed
hidden photon. If one is instead interested in a DM sce-
nario where f

n

= f
p

, all sensitivities improve by a factor
of four. We assume that the sensors have a limited dy-
namic range and cut o↵ the plot just below m

X

= 100
MeV, corresponding to a ⇠ 10 eV upper bound on the
deposited energy in nuclear recoils. We have also cut
o↵ the two-excitation process in the perturbative regime

described above, ! < 0.1 eV and m
X

< 1 MeV. Here,
the size of the density perturbation �⇢ approaches ⇢0,
and nonperturbative e↵ects start to become important;
this is shown as a dotted line in the figure. The solar
neutrino background is negligible, as we are restricted to
energy deposits below ⇠0.1 eV (see Fig. 3 of [24]), so
that the 95% confidence level corresponds to 3.6 events
[38]. Other sources of noise can be controlled by the
requirement that there be two back-to-back excitations
in the final state. As can be seen from the plot, two-
excitation processes and nuclear recoils provide highly
complementary modes of DM detection, with sensitivity
in distinct regions of parameter space. With 1 meV en-
ergy resolution TESs, we can therefore employ a single
multimodal liquid helium experiment to constrain dark
matter masses over five orders of magnitude.

We also show scattering cross-sections corresponding
to fixed ↵

X

, ↵
p

for a given mediator mass. These fixed
couplings are chosen to broadly satisfy terrestrial, cos-
mological and astrophysical constraints. The constraints
applied are described in general terms for DM-electron
interactions in [23], and are outlined in great detail in
[24]. Constraints on DM-nucleon interactions are similar
for models of interest here, such as a kinetically-mixed
dark photon, so we simply make use of these parameters
to emphasize that dark matter models satisfying all ter-
restrial, astrophysical, and cosmological constraints are
within reach of the class of experiments we propose. Note
that the sensitivity curves in [24] depended on the DM
model – for instance there was less sensitivity for models
with kinetically-mixed dark photons. Here, since helium
is an insulator, the index of refraction is order unity, mak-
ing the e↵ective in-medium photon mass negligible.

Conclusions. We have proposed a new method of
detecting DM using the quantum fluid dynamics of super-



HELIUM

REALIZED IN EXPERIMENT

▸ Helium experiment under development in McKinsey 
group; modify to multi-excitation detector

Hertel, McKinsey



SUMMARY

ROAD FORWARD


