Color Centers as low threshold Radiation Detectors

Ranny Budnik
Weizmann Institute of Science

Collaborators: T. Volansky, O. Slone, H. Landsman, N. Priel,
O. Cheshnovsky
Inspirators: R. Essig, J. Mardon

The goal: 10⁵ CDMSlite 2015 WIMP-nucleon cross section (zb) 10⁻⁴² 10⁻⁴³ 10 10⁻⁴⁴ MIMP–nucleon cross section (cm²) . SuperCDMS 2014 10³ PandaX 2015 10⁻⁴³ 10^2 XENON100 2012 10¹ 10⁰ 10 $\frac{10^{1}}{m_{WIMP}} (\text{ GeV/c}^{2})^{10^{2}}$ 10^{3}

The goal:

The Color of Fancy Sapphire

Color Centers

- It is known for many years that radiation damage gives color to transparent windows near e.g. nuclear power plants
- There are various mechanisms causing this effect, and the incident radiation can be gamma, neutron or charged particles

F-center in a nutshell

- The absorption dependency on the lattice constant is a power law (particle in a box)
- By this mechanism a transparent medium becomes colored
- Elastic collision may produce displacement (gamma, electron, neutron and ions)

F-center in a nutshell

- The absorption dependency on the lattice constant is a power law (particle in a box)
- By this mechanism a transparent medium becomes colored
- Elastic collision may produce displacement (gamma, electron, neutron and ions)

First CC measurement

The goal:

Identifying a crystal which is sensitive to low-energy-neutrons

(and check the discrimination between Nuclear Recoils coming from neutrons, and Electronic Recoils originating from gammas)

The goal:

Identifying a crystal which is sensitive to low-energy-neutrons

(and check the discrimination between Nuclear Recoils coming from neutrons, and Electronic Recoils originating from gammas)

Two parallel ongoing efforts:

- 1) Irradiation of as many crystals as possible
- 2) Establishment a setup for F-centers measurement

The Downs

- Missing an order of magnitude of orders of magnitudes in background...
- Direct calculation impossible due to phase space
- However, only extremely difficult once established the signal
- Annealing, bleaching, counting, production, discrimination, accurate calibration sources, price

The Ups

- Natural discrimination
- Likely directional
- Multiple targets, each with different signal
- Calibration is possible
- Many optional handles: B field, RF, polarization...
- And of course, the only one on that side of town (10 eV town)!

Many optional targets, but little is known

Crystal Irradiation in SARAF – 30 keV neutrons

Number of defects first order calculation

For a 1mmX1mmX1mm Sapphire crystal:

Number of interactions per neutron is approximately

$$\lambda = \sigma n_0 l$$

Using the oxygen elastic cross-section we get:

$$\lambda_0 = 2.6 \times 10^{-3}$$

$$(2x10^{-42}cm2 \times 1.3x10^{22}/cm3 \times 0.1cm = 2.6x10^{-3})$$

Number of defects first order calculation

For a 1mmX1mmX1mm Sapphire crystal:

If the rate of LILiT is: $R_n = 10^{11} n/s$

The flux of a crystal placed 112cm from LiLiT for 10 hours

$$f_n = 2.25^{10} n/cm^2/10 hr$$

Therefore the expected defects concentration for the first run is:

$$n_v = f_n \lambda_O / l = 5.85 \times 10^8 / cm^3$$

Is it measurable?

The estimated concentration:

$$n_v = 5.85 \times 10^8 / cm^3$$

The estimated optical depth:

$$\tau = \sigma_{cc} n_v l = O(10^{-10} - 10^{-8})$$

$$(\sigma_{cc} = O(10^{-17} - 10^{-16}) cm2)$$

It can not be measured by means of absorption!

However, the fluorescence is within reach.

Summary

- Color Centers are a promising avenue for low energy NR detection
- The current experimental and theoretical knowledge is insufficient, much work is needed on both
- Irradiation of multiple samples ongoing/done
- Optical system with the required sensitivity is being developed, expected to give results this year
- After identifying the "promising avenues", the real work begins!

Fluorescence measurement

Raman Scattering of crystals

• In Sapphire 2 modes are active in Raman scattering -

$$A_{1g} = \begin{pmatrix} \alpha_{xx} & & \\ & \alpha_{xx} & \\ & & \alpha_{zz} \end{pmatrix} \; ; \; E_g = \begin{pmatrix} -\alpha_{xy} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{xy} & -\alpha_{xy} & -\alpha_{xz} \\ \alpha_{xz} & -\alpha_{xz} \end{pmatrix}$$

The intensity of the scattering is:

$$I_{ij}(\lambda) \propto |\langle e_i(\theta, \phi)| R(\lambda) |e_j(\theta, \phi)\rangle|^2$$

The cross section is:

$$\left.\frac{d\sigma}{d\Omega}\right|_{\Delta q=417.4\,cm^{-1}}=1.59\cdot 10^{-30}\,\mathrm{c}m^2/\mathrm{sr} \text{ unit cell}$$

Experimental Setup

Orientation of the crystal

 Using the Raman tensors, we found the orientation of the lattice

$$I_{ij}(\lambda) \propto |\langle e_i(\theta, \phi) | R(\lambda) | e_j(\theta, \phi) \rangle|^2$$

$$\begin{cases} \theta = 1.57 - 0.32 \, i = 90^{\circ} + \text{Attenuation term} \\ \phi = 29.3^{\circ} \end{cases}$$

where θ , ϕ are the spherical angles

 The polarization obtained is the expected one -

Polarization of the scattered wave