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This talk:

 Some history, context

 Some advantages of superfluid helium
* Signals in superfluid helium

* Energy partitioning

 Some detector concepts

Next talk (Scott Hertel)

 Some recent TES measurements with superfluid helium
* Phonon/roton reflection and detection

* Light/heat based ER vs NR discrimination

* Dark counts



Liquified Noble Gases: Basic Properties

Dense and homogeneous
Do not attach electrons, heavier noble gases give high electron mobility
Easy to purify (especially lighter noble gases)
Inert, not flammable, very good dielectrics
Bright scinftillators

Liquid Boiling point Electron Scintillation  Scintillation Long-lived Triplet molecule
density  at 1 bar mobility ~ wavelength yield radioactive lifetime
(g/cc) (K) (cm?/Vs) (nm) (photons/MeV) isotopes (us)

LHe 0.145 4.2 low 80 19,000 none 13,000,000

LNe 1.2 27.1 low 78 30,000 none 15

LAr 14 87.3 400 125 40,000 Fnr, 42ar 1.6

LKr 2.4 120 1200 150 25,000 8lkr, 8%r 0.09

LXe 3.0 165 2200 175 42,000 136y 0.03



Superfluid helium-4 as a detector material

«  Used to produce, store, and detect 20
ultracold neutrons.

* Production based on “superthermal
effect”: direct production of phonons 15
by cold neutrons, allowing the
neutrons to scatter to 100 neV-scale
energies and be captured by
magnetic fields or material bottles.

+ Can store the neutrons within the
superfluid helium; neutrons cannot
absorb on He-4.

+ Detection based on scintillation light.

Elementary Excitations
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Superfluid helium-4 as a detector material

« Search for the neutron electric dipole Measurement of neutron lifetime:
moment: R. Golub and S.K. Lamoreaux, P.R. Huffman et al, Nature 403, 62-64 (2000).
Phys. Rep. 237, 1-62 (1994).
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Superfluid helium-4 as a detector material

Coded aperture formed
by detectors

Copper Cryostat Moderator

Proposed for measurement
of pp solar neutrino flux
using roton detection
(HERON): R.E. Lanou, H.J.
Maris, and G.M. Seidel,
Phys. Rev. Lett. 58, 2498
(1987).

Two signal channels, heat
and light. Both measured
with a bolometer array.
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Why Superfluid Helium for Low-mass Dark
Matter Detection?

* Kinematic matching with light dark matter candidates.
— Pull the energy depositions up in energy, to above threshold.

— Gain access to more of the WIMP velocity distribution, for a given energy
threshold.

— New: access to extremely low mass dark matter through multi-excitation
production, back-to-back jets (see K.Zurek talk, arXiv:1604.08206).

e Superfluid helium offers multiple signals to choose from, and to separate
dark matter signal from backgrounds (both electron recoils and detector
backgrounds).

— Prompt light

— Delayed triplet excimers

— Charge

— Heat (roton and photon quasiparticles)
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Why Superfluid Helium?

Liquid down to O K, allowing 10-100 mK-scale TES readout.
— Take advantage of the great advances in TES technology
— Take advantage of possible ~ 100% detection efficiency for photons, triplet excimers

— Take advantage of the extremely low vapor pressure of superfluid helium at low
temperatures, enabling quantum evaporation-based heat signal amplification.

Helium is expected to have robust electronic excitation production efficiency,
with a forgiving Lindhard factor (high Leff), so nuclear recoil scintillation
signals should be relatively large.

Negligible target cost

Low vibration sensitivity: As a superfluid, small velocities don’t generate
excitations.

Large ionization gap -> less signal quanta per keV than in super-,
semiconductors. But no ER background below 14 eV.

Impurities easily removed, and will fall out of the superfluid.
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The importance of discrimination

It is highly advantageous to have at least 2 signal channels with
different ER and NR response.

This is to allow nuclear recoil/electron recoil discrimination, both
to reject ER backgrounds, but also to have a separate handle on NR
signal in the face of unexpected backgrounds. In real experiments,
discrimination is crucial, as you can see from the history of the
field.

ER/NR discrimination is also critical for discovery of dark matter
interactions.

The concepts presented here all use multiple signal channels to
allow ER/NR discrimination, while maintaining excellent signal
strength.
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Helium-4 Nuclei: A Natural Match for Light Dark Matter Detection
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Helium-4 Nuclei: A Natural Match for Light Dark Matter Detection

Another view: maximum recoil energy for various targets, as a function of WIMP mass.
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Reacts with
liquid to form
A's*, molecule
(1.7 us)

Electron slows,
forms bubble

(4 ps)

A's*, molecule
forms

Reacts with ;
liquid to form <« He(2°S)
a’s*, molecule jonizing
(15 us) — radiation —
event
l He*
Penning He," ion
ionization forms
(300 fs)
T Hes" ion
forms; snowball
5ps
a’>*, molecule 5 ps)
forms l
lon-electron
Y recombination
a’>*, molecule (300 ps)

radiatively decays,;
phosphorescence
(13 s)

For T > 1.5 K, molecules diffuse
less than 1 mm during their lifetime

Y

A's*, molecule
radiatively decays;
prompt fluorescence
(<10 ns)
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FIG. 2. Count rate N of detected Hey(a ®S ) decays versus
time. A **Cl B source is placed in the center of the detection re-
gion and then removed in a time Ar<<1 s. This measurement was
performed at a remperature of 1.8 K and resulted in a measured
decay rate 7 of 13+2 s,
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Light WIMP Detector Concept #1: Two-Phase Helium

Energies down to ~ 1 keV
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Liquid helium-4 predicted response
(Guo and McKinsey, arXiv:1302.0534,
Phys. Rev. D 87, 115001 (2013).)
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Predicted nuclear recoil discrimination and signal strengths in liquid helium

S2/S1 ratio

Discrimination power
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How to detect triplet helium molecules?

Detect with TES array immersed in superfluid, and let the molecules
travel ballistically to be detected (v~ 1-10 m/s)

— <1 eV resolution quite possible

— Each molecule has ~ 18 eV of internal energy, which will mostly be
released as heat, electronic excitation in TES.

— Note that the same bolometer array could detect both light and
triplet excimers!

— Now has been demonstrated experimentally (see S. Hertel talk).
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1.6
phonons and rotons

1.2
superfluid supports vibration < & +
(some non-intuitive) @ 'y R ir
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Signal partitioning — electrons recoils
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Signal partitioning — nuclear recoils

George Seidel
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Athermal Evaporation — Demonstrated by HERON R&D
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Fig. 2. (a) The calorimeter response (average of about 100 events)

when an « particle is stopped in liquid helium. The collimated «
tracks are (a) parallel and (b) perpendicular to the liquid surface.
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Concept #2

Signal channels:

1) Scintillation
2) Ballistic Triplet Excimers athermal evaporation
3) Phonons/Rotons

@ 0 @ ®

No drift field, and no S2 signal
* no worry of few-electron background
e Position reconstruction via signal hit §

patterns @
* (Though could apply drift field to detect l\N\l

single electrons via roton/phonon phonons,

production.) § % el
Best for energies down to 300 eV.

Discrimination using signal ratios

Position reconstruction using signal hit
patterns
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Concept #3

Signal channels:

Phonons athermal evaporation
Rotons ° ® ® o

Energies down to ~ few meV !! §
Discrimination using roton/phonon l\N\) ®phonons,
signal ratios likely. Electron recoils, § % ions
detector effects, nuclear recoils
likely create different roton/
phonon distributions.

Position reconstruction using
signal hit patterns
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Summary

Highest energies: Use charge and light?
Medium energies: Light and heat looks very promising.
Low energies: Use phonons and rotons, likely still have discrimination.

Multiple advantages, this looks like an ideal technology for low-mass
dark matter detection.



