DIRECT DETECTION

Summary and outlook
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GOALS/CHALLENGES

SENSITIVITY
low thresholds

BACKGROUNDS
1) measure, understand

2) control

EXPOSURE
scaling up

SIGNAL/BKGD DISCRIMINATION

long term stability for annual modulation
Directional sensitivity?

Jeremy Mardon, SITP, Stanford



MORE ESTABLISHED

MORE SPECULATIVE
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MODELS

Light mediators (photon/ hidden-photon / other?)

Heavy mediator: colliders better
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e RECOIL

Freeze—in, DM with Ultralight Dark Photon
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improve with
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e” RECOIL IN LIQUID XE

~10 MeV mass threshold for 1 e
Established sensitivity

(LARGE?) BACKGROUNDS from:
e trapping at surface / on impurities?

e” emission from cathode?

Xenonioo, LUX, LZ/XenonIT challenges:

Reproduce Xenonio’s purity & low trapping rate
Reduce Bkd with timing cuts (tradeoft vs deadtime)

Dedicated Exp?
small scale, less deep, optimized for few-e search
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e RECOIL IN GE/SI

~1 MeV mass threshold for1 e

Si/Ge: CDMSlite & DAMIC
Working towards 1 e- sensitivity
Path laid out, ~ 2yr timescale?

Ge HV detectors expected bgnd spectrum atVy = 100V, O =

Signal
Solar Neutrino
Cosmogenic Bkg

BACKGROUNDS from:

leakage current?
radioactive bkd: ~few per year

other new bkds?
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SCINTILLATORS

Single photon detection (TES? MKID?)
No E-field (lowers bkd?)

1 kg—year
XENONI0

- Scintillator
I TES/MKID
I Active Shielding

10 100
m, [MeV]
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NR IN LIQUID HELIUM

Nuclear recoil — quasiparticle production

ballistic atoms from liquid surface

energy gain in detector

~10 meV threshold?
few MeV DM mass

my [MeV/c?]
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NR IN SUPERFLUID LIQUID HELIUM

Nuclear recoil — 2-phonon production

purpose of supertfluid:
collection of quasiparticles
(no thermalization)

Reach to ~keV scale DM mass?

102 10~
my [MeV/c?]

Theory issue:

form-factor suppresses coupling through hidden-photon
mediator or DM with EM dipole.
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SUPERCONDUCTOR

e- recoil — quasiparticle production

purpose of superflaid-conductor:
collection of quasiparticles
(no thermalization)

Reach to ~keV scale DM mass?

Theory issue:
in medium-eftects suppress scattering through hidden photon
mediator

BBN & cooling constraints
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SUPERCONDUCTOR

Hidden photon dark matter

Stellar constraints
(Stuckelberg case)

Resonant
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TES:
Today / Tomorrow



TES: Current Status

TES Tc Volume IS, [W//Hz]  |og [meV]
W 125  |25x25x25 5x10-18 120
Ti 100 |6x0.4x56 4.2x101° 47

Bath ‘ MoCu 110  {100x100x200 4.2x101° 296

SuperCDMS
* Tc =52 mK
i Gpt ~ 50th

Phonon TES rails




TES: Sensitivity Scaling Laws
O'i B~ X VVT?3

Theoretically: Sensitivity can be significantly improved

Engineering Challenges:
* Parasitic Power: Vibrations Most TES R&D over past

* Parasitic Power: EMI decade orthogonal to
. Low T. Superconducting Films greater baseline
sensitivity

Similar scaling laws from MKIDs



COLOR CENTERS

Nuclear recoil — lattice dislocation

Blank sample Exposed sample (A = 61.5 nm)

10’s eV threshold — 30-100 MeV DM masses

Very new technology, active R&D at Weizmann
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DIRECTIONAL SENSITIVITY

Semiconductors ARE directional
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DIRECTIONAL SENSITIVITY

Semiconductors ARE directional
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Other crystals targets? XXXX e ©

Graphene sheets

e” ejection out of surface

Directional IF e direction is measured

Ptolemy exp. to search for CvB: ~0.5 kg graphene, detects ejected e-
Use for LDM search first?

[s it technologically teasible?
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DIRECTIONAL SENSITIVITY
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DIRECTIONAL SENSITIVITY

Semiconductors ARE directional

®
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S1/Ge too symmetric b (“ - g “..
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Other crystals targets? XXXX '.'.o

Graphene sheets
e” ejection out of surface
naturally directional
Ptolemy exp. to search for CvB: ~0.5 kg graphene, detects ejected e-
Use for LDM search first?

[s it technologically teasible?

Carbon nanotubes targets?

Also naturally directional
Produce in volume in coherent structure?
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OUTLOOK

Technology : several directions, very promising

Signal vs. Bkd discrimination: big challenge

Viable models below ~MeV?
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