DIRECT DETECTION Summary and outlook

GOALS/CHALLENGES

SENSITIVITY

low thresholds

BACKGROUNDS

I) measure, understand2) control

EXPOSURE

scaling up

SIGNAL/BKGD DISCRIMINATION

long term stability for annual modulation Directional sensitivity?

MORE ESTABLISHED

MORE SPECULATIVE

Models

Light mediators (photon/hidden-photon/other?)

Heavy mediator: colliders better

e RECOIL

XENONio bound improve with current LXe exps?

Semiconductors surpass LXe sensitivity?

e RECOIL IN LIQUID XE

~10 MeV mass threshold for 1 e⁻ Established sensitivity

(LARGE?) BACKGROUNDS from:

e trapping at surface / on impurities?

e⁻ emission from cathode?

Xenonioo, LUX, LZ/XenoniT challenges:

Reproduce Xenonio's purity & low trapping rate Reduce Bkd with timing cuts (tradeoff vs deadtime)

Dedicated Exp?

small scale, less deep, optimized for few-e search

e RECOIL IN GE/SI

~I MeV mass threshold for I e⁻

Si/Ge: CDMSlite & DAMIC

Working towards I e- sensitivity Path laid out, ~ 2yr timescale?

BACKGROUNDS from:

leakage current? radioactive bkd: ~few per year other new bkds?

Golwala talk at DM2016

SCINTILLATORS

Single photon detection (TES? MKID?)

No E-field (lowers bkd?)

NR IN LIQUID HELIUM

Nuclear recoil — quasiparticle production

ballistic atoms from liquid surface

energy gain in detector

~10 meV threshold? few MeV DM mass

NR IN SUPERFLUID LIQUID HELIUM

Nuclear recoil ---> 2-phonon production

purpose of superfluid: collection of quasiparticles (no thermalization)

Reach to ~keV scale DM mass?

Theory issue:

form-factor suppresses coupling through hidden-photon mediator or DM with EM dipole.

SUPERCONDUCTOR

e- recoil — quasiparticle production

purpose of superfluid conductor: collection of quasiparticles (no thermalization)

Reach to ~keV scale DM mass?

Theory issue:

in medium-effects suppress scattering through hidden photon mediator

BBN & cooling constraints

Jeremy Mardon, SITP, Stanford

SUPERCONDUCTOR

TES: Today / Tomorrow

TES: Current Status

TES	Тс	Volume	√S _p [W/√Hz]	σ _E [meV]
W	125	25x25x25	5x10 ⁻¹⁸	120
Ti	100	6x0.4x56	4.2x10 ⁻¹⁹	47
MoCu	110	100x100x200	4.2x10 ⁻¹⁹	296

SuperCDMS

- Tc = 52 mK
- σ_{pt} ~ 50eVt

TES: Sensitivity Scaling Laws

$$\sigma_{< E>}^2 \propto \sqrt{VT^3}$$

Theoretically: Sensitivity can be significantly improved

Engineering Challenges:

Parasitic Power: Vibrations Most TES R&D over past

Parasitic Power: EMI decade orthogonal to

Low T_c Superconducting Films greater baseline sensitivity

Similar scaling laws from MKIDs

COLOR CENTERS

Nuclear recoil — lattice dislocation

10's eV threshold ---> 30-100 MeV DM masses

Very new technology, active R&D at Weizmann

Semiconductors ARE directional

Si/Ge too symmetric (<1% directional variation)
Other crystals targets?

Semiconductors ARE directional

Si/Ge too symmetric (<1% directional variation) Other crystals targets?

Graphene sheets

e ejection out of surface

Directional IF e-direction is measured

Ptolemy exp. to search for CvB: ~0.5 kg graphene, detects ejected e-

Use for LDM search first?

Is it technologically feasible?

Semiconductors ARE directional

Si/Ge too symmetric (<1% directional variation)
Other crystals targets?

Graphene sheets

e⁻ ejection out of surface naturally directional

Ptolemy exp. to search for CvB: ~0.5 kg graphene, detects ejected e-

Use for LDM search first?

Is it technologically feasible?

Carbon nanotubes targets?

Also naturally directional Produce in volume in coherent structure?

OUTLOOK

Technology: several directions, very promising

Signal vs. Bkd discrimination: big challenge

Viable models below ~MeV?