Phase Structure & Dynamics of QCD a functional perspective

Hot Quarks 2016 South Padre Island, TX

Nils Strodthoff, LBNL

Fundamental challenges

1. Understanding the **phase structure of QCD** from first principles

Phase structure at large chemical potentials largely unknown due to **sign problem** in lattice QCD...

Existence and location of the critical point?

adapted from GSI

Fundamental challenges

1. Understanding the **phase structure of QCD** from first principles

Phase structure at large chemical potentials largely unknown due to **sign problem** in lattice QCD...

Existence and location of the critical point?

2. Understanding the **fundamental properties** of strongly interacting matter from its **microscopic description**

Hadron spectrum

pole masses, decay constants, form factors, scattering amplitudes,...

Realtime observables

elementary spectral functions, transport coefficients...

Difficult to obtain in Euclidean approaches due to analytic continuation • 2

Nonperturbative approaches

Both challenges require first-principle approaches:

Lattice QCD

Nonperturbative approaches

Both challenges require **first-principle approaches**:

Lattice QCD

Functional approaches

- Dyson-Schwinger equations (DSE)
- n-particle irreducible methods (nPl)
 Functional Renormalization Group (FRG)

use relations between off-shell Green's functions

e.g. quark propagator DSE

- Complementary to the lattice
- ✓ No sign problem
- ✓ Calculation of realtime observables
- Effective models incorporated

Functional RG for QCD

Spirit of **Wilson RG**: Calculate full quantum effective action by integrating fluctuations with momentum k

Functional RG for QCD

Spirit of Wilson RG: Calculate full quantum effective action by integrating fluctuations with momentum k \mathbf{L}_k $k \to \Lambda_{UV}$ $k \to 0 \models$

S

Functional Renormalization Group (FRG)

Dynamical Hadronization

gluon

ghost

quark

Dynamical Hadronization

QCD Phase Structure

\bullet \bullet \bullet

- Mitter, Pawlowski, NSt Phys.Rev. D91 (2015) 054035
- Cyrol, Fister, Mitter, Pawlowski, NSt Phys.Rev. D94 (2016) no.5, 054005

Functional methods at $T,\mu>0$

Herbst, Pawlowski, Schaefer Phys.Lett. B696 (2011) Quark propagator DSE, Nf=2+1

Fischer, Luecker, Welzbacher Nucl.Phys. A931 (2014) 774-779

Functional methods at $T,\mu>0$

Herbst, Pawlowski, Schaefer Phys.Lett. B696 (2011)

Nucl.Phys. **A931** (2014) 774-779

But: so far all require additional phenomenological input

Functional methods at $T,\mu>0$

Herbst, Pawlowski, Schaefer Phys.Lett. B696 (2011) Fischer, Luecker, Welzbacher Nucl.Phys. A931 (2014) 774-779

But: so far all require additional phenomenological input

Aim: Quantitative framework for continuum QCD fundamental parameters of QCD as only input parameters

fQCD collaboration

J. Braun, L. Corell, A. K. Cyrol, L. Fister, W. J. Fu, M. Leonhardt, M. Mitter, J. M. Pawlowski, M. Pospiech, F. Rennecke, NSt, N. Wink

7

Quark propagator (T=0)

Quenched quark propagator

From the full matter system using quenched gluon propagator as only input

Mitter, Pawlowski, NSt Phys.Rev. D91 (2015) 054035 \geq

Truncation

Vertex expansion: systematic expansion in terms of 1PI vertices

Perturbative relevance counting no longer valid

Gluon propagator (T=0)

Pure YM gluon propagator

From a self-consistent solution of the transversal 2-,3- and 4-point functions

 $\Gamma^{\mu\nu}_{A^2}(p) = Z_A(p)p^2\Pi^{\mu\nu}_T(p)$

Cyrol, Fister, Mitter, Pawlowski, NSt Phys.Rev. D94 (2016) no.5, 054005

Unquenched propagators

Unquenched gluon and quark propagators

From the solution of the coupled matter-glue system

Cyrol, Mitter, Pawlowski, NSt in prep

✓ Everything in place for first quantitative results of the full system at finite T and µ
 ✓ Stay tuned for fluctuation observables...

Realtime observables

• • •

- > Kamikado, NSt, von Smekal, Wambach Eur.Phys.J. C74 (2014) 2806
- > Tripolt, NSt, von Smekal, Wambach Phys.Rev. **D89** (2014) 034010
- Pawlowski, NSt Phys.Rev. D92 (2015) 9, 094009
- Christiansen, Haas, Pawlowski, NSt PRL **115** (2015) 11, 112002

Real-time observables from Euclidean framework

$$\Gamma_R^{(2)}(\omega, \vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon), \vec{p})$$
$$\rho(\omega, \vec{p}) = \frac{\operatorname{Im} \Gamma_R^{(2)}(\omega, \vec{p})}{\operatorname{Im} \Gamma_R^{(2)}(\omega, \vec{p})^2 + \operatorname{Re} \Gamma_R^{(2)}(\omega, \vec{p})^2}$$

requires analytical continuation from Euclidean to Minkowski signature numerically hard problem

Real-time observables from Euclidean framework

$$\Gamma_R^{(2)}(\omega, \vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon), \vec{p})$$
$$\rho(\omega, \vec{p}) = \frac{\operatorname{Im} \Gamma_R^{(2)}(\omega, \vec{p})}{\operatorname{Im} \Gamma_R^{(2)}(\omega, \vec{p})^2 + \operatorname{Re} \Gamma_R^{(2)}(\omega, \vec{p})^2}$$

requires analytical continuation from Euclidean to Minkowski signature numerically hard problem

Popular approaches (based on Euclidean data)

- Maximum Entropy Method (MEM)
- Padé Approximants

Real-time observables from Euclidean framework

$$\Gamma_R^{(2)}(\omega, \vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon), \vec{p})$$
$$\rho(\omega, \vec{p}) = \frac{\operatorname{Im} \Gamma_R^{(2)}(\omega, \vec{p})}{\operatorname{Im} \Gamma_R^{(2)}(\omega, \vec{p})^2 + \operatorname{Re} \Gamma_R^{(2)}(\omega, \vec{p})^2}$$

requires analytical continuation from Euclidean to Minkowski signature numerically hard problem

Popular approaches (based on Euclidean data)

- Maximum Entropy Method (MEM)
- Padé Approximants

Alternative: analytic continuation on the level of the functional equation

- Kamikado, NSt, von Smekal, Wambach Eur.Phys.J. C74 (2014) 2806
- Floerchinger JHEP 1205 (2012) 021
- Strauss, Fischer, Kellermann PRL 109 (2012) 252001

Here Minkowski external momenta appears as external parameters

Pawlowski, NSt Phys.Rev. D92 (2015) 9, 094009

Summary

- ✓ Directly calculated spectral functions
- ✓ Tested in scalar and Yukawa models at T, μ >0
- Allows the inclusion of full momentum dependence > NSt, in prep
- **Quark & gluon spectral functions in full QCD**

Transport Coefficients

Kubo formula for the shear viscosity

$$\eta = \lim_{\omega \to 0} \frac{1}{20} \frac{\rho_{\pi\pi}(\omega, \vec{0})}{\omega}$$

Require $\rho_{\pi\pi}(\omega, \vec{p}) = \int_x e^{-i\omega x_0 + i\vec{p}\vec{x}} \langle [\pi_{ij}(x), \pi_{ij}(0)] \rangle$

Transport Coefficients

Kubo formula for the shear viscosity

$$\eta = \lim_{\omega \to 0} \frac{1}{20} \frac{\rho_{\pi\pi}(\omega, \vec{0})}{\omega}$$

Require $\rho_{\pi\pi}(\omega, \vec{p}) = \int_x e^{-i\omega x_0 + i\vec{p}\vec{x}} \langle [\pi_{ij}(x), \pi_{ij}(0)] \rangle$

Expansion formula

Pawlowski Annals Phys. 322 (2007) 2831-2915

$$\langle \pi_{ij}[\hat{A}]\pi_{ij}[\hat{A}]\rangle = \pi_{ij}[G_{A\phi_k}\frac{\delta}{\delta\phi_k} + A]\pi_{ij}[G_{A\phi_k}\frac{\delta}{\delta\phi_k} + A]$$

Transport Coefficients

Kubo formula for the shear viscosity

$$\eta = \lim_{\omega \to 0} \frac{1}{20} \frac{\rho_{\pi\pi}(\omega, \vec{0})}{\omega}$$

Require $\rho_{\pi\pi}(\omega, \vec{p}) = \int_x e^{-i\omega x_0 + i\vec{p}\vec{x}} \langle [\pi_{ij}(x), \pi_{ij}(0)] \rangle$

Expansion formula

Pawlowski Annals Phys. 322 (2007) 2831-2915

$$\langle \pi_{ij}[\hat{A}]\pi_{ij}[\hat{A}]\rangle = \pi_{ij}[G_{A\phi_k}\frac{\delta}{\delta\phi_k} + A]\pi_{ij}[G_{A\phi_k}\frac{\delta}{\delta\phi_k} + A]$$

Finite number of diagrams involving full propagators/vertices

η /s in YM theory

Christiansen, Haas, Pawlowski, NSt PRL **115** (2015) 11, 112002

Summary

QCD phase structure

towards a quantitative continuum approach to QCD

- ✓ Quantitative grip on fluctuation physics in the vacuum
- finite temperature and density
- Nuclear matter; nuclear binding energy...

Realtime observables

Elementary spectral functions

new approach to analytical continuation problem

- tested in low energy eff. models (O(N), QM model)
- vector meson, quark & gluon, charmonium spectral functions

> Transport Coefficients

from loop expansion involving full propagators and vertices

- Global quantitative prediction for η /s in YM theory
- Full QCD, bulk viscosity, relaxation times

Thank you for your attention!

Chiral symmetry breaking

χSB <-> resonance in 4-Fermi int. (pion pole)

β-function:

Review: Braun J.Phys. G39 (2012) 033001

4-Fermi Interactions

(a) Renormalisation group scale dependence of dimensionless fourfermi interactions, see App. B 2 c and bosonised σ - π channel. Grey: respects chiral symmetry, blue: breaks $U(1)_A$, red: breaks $SU(2)_A$, magenta: breaks $U(2)_A$.

4-Fermi Interactions

(a) Renormalisation group scale dependence of dimensionless fourfermi interactions, see App. B 2 c and bosonised σ - π channel. Grey: respects chiral symmetry, blue: breaks $U(1)_A$, red: breaks $SU(2)_A$, magenta: breaks $U(2)_A$.

- Bosonizing the σ - π channel only is sufficient
- In the vacuum: other channels not quantitatively relevant

YM running couplings

Tripolt, NSt, von Smekal, Wambach Phys.Rev. **D89** (2014) 034010

Tripolt, NSt, von Smekal, Wambach Phys.Rev. **D89** (2014) 034010

Tripolt, NSt, von Smekal, Wambach Phys.Rev. D89 (2014) 034010

Tripolt, NSt, von Smekal, Wambach Phys.Rev. D89 (2014) 034010

η/s in Yang-Mills Theory

Christiansen, Haas, Pawlowski, NSt PRL **115** (2015) 11, 112002

η/s in Yang-Mills Theory

Christiansen, Haas, Pawlowski, NSt PRL **115** (2015) 11, 112002

Direct sum:
$$\frac{\eta}{s}(T) = \frac{a}{\alpha_s (cT/T_c)^{\gamma}} + \frac{b}{(T/T_c)^{\delta}}$$
$$\gamma = 1.6 \quad a = 0.15 \quad b = 0.14 \quad c = 0.66 \quad \delta = 5.1$$

High T: consistent with HTL-resummed pert. Theory (fixing γ) supporting quasiparticle picture

Small T: algebraic decay glueball resonance gas

η /s in QCD

From YM to QCD in three simple steps

- 1. Replace α_s ; impose equality at T_c
- 2. Genuine quark contributions to η and s
- 3. Replace GRG by HRG > Demir, Bass PRL 102 (2009) 172302

$$\frac{\eta}{s}(T) = \frac{a}{\alpha_s (cT/T_c)^{\gamma}} + \frac{b}{(T/T_c)^{\delta}}$$

 $\gamma = 1.6 \quad a = 4/3 \cdot 0.15 \quad b = 0.16 \quad c = 0.79 \quad \delta = 5$

$$\alpha_s^{N_f = 0}|_{T_c} = \alpha_s^{N_f = 3}|_{T_c}$$

η /s in QCD

From YM to QCD in three simple steps

1. Replace α_s ; impose equality at T_c

- 2. Genuine quark contributions to η and s
- 3. Replace GRG by HRG > Demir, Bass PRL 102 (2009) 172302

$$\frac{\eta}{s}(T) = \frac{a}{\alpha_s (cT/T_c)^{\gamma}} + \frac{b}{(T/T_c)^{\delta}}$$

 $\gamma = 1.6 \quad a = 4/3 \cdot 0.15 \quad b = 0.16 \quad c = 0.79 \quad \delta = 5$

 T_{min} =1.3 T_{c} Value: 0.17

$$\alpha_s^{N_f = 0}|_{T_c} = \alpha_s^{N_f = 3}|_{T_c}$$

Workflow ...towards 1-click QCD

