
Kinetic freeze out from 
a local anisotropic fluid

Hot Quarks 2016

Steffen Feld 

in collaboration with N. Borghini and C. Lang



Content
• Reminder on Cooper-Frye freeze out 

• Motivation for local anisotropy 

• Effects of the local anisotropy on: 

1. transverse particle spectra 

2. flow coefficients  

3. HBT radii (time permitting) 

• Conclusion
2



Need for kinetic freeze out
• Inside QGP fluid-like 

behavior with small  

• Expanding fireball of 
conserved global quantities 

• Particles reaching the 
detector do not interact with 
each other, large/infinite  
lmfp ! kinetic theory works

lmfp ! hydrodynamics works
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Need to glue two very different types 
of theoretical models

r

t Hadrons
! kinetic theory

Hadrons
! Hydro

QGP
! ideal Hydro

QGP
! aniso. / dissipative Hydro

early stages
! pre-equilibrium

 kinetic freeze out here !



Cooper-Frye freeze out  
• Description of the medium turns suddenly from 

fluid to a kinetic one, while passing through a 
hypersurface 𝜮  

• On-shell phase space distribution  

• Particles inside a fluid element:  

• Lorentz invariant particle spectrum:
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Problems of (naive) Cooper-
Frye freeze out

• Negative contributions to the particle spectrum due to 𝜮 regions 
where                       (see talk by Oliinychenko) 

• Computed observables depend on choice of freeze out parameter           

Not physical, Nature performs a "smooth" transition 
between the two asymptotic models 

But Cooper-Frye recipe is much too attractive to be 
discarded
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Motivation for an anisotropic 
distribution function

• Nonrelativistic studies show:  

• Hypersonic flow through a nozzle into vacuum will 
end in an anisotropic distribution function 

• Characterized by two effective temperatures     and   

• Anisotropic hydrodynamics can improve transition from 
pre-equilibrium to hydrodynamics (see talk by Bazow) 

• Generalization to relativistic HIC case … 
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Anisotropic freeze out
• Idea: implement an anisotropy along the radial direction in the 

phase space distribution 

• Tool: Romatschke-Strickland distribution 

• Boost into lab-frame 

• Consequence: additional parameter 𝜉 

• In order to generate higher effective temperature/pressure in 
radial direction, need to choose 𝜉 < 0 

• Next step: insert into Cooper-Frye Integral
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Technical details
• Cylindrical lab-frame coordinates  

• Blast-wave like fluid velocity profile:  

•                ,  

• Particle mass: 140 MeV 

• Anisotropic temperature         , anisotropy parameter
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to deviations from the almost exponential shape valid in the
isotropic case. More precisely, the spectrum becomes harder
when ξ goes to increasingly negative values. This clearly
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Fig. 1 Transverse spectra for fixed " and varying anisotropy parame-
ter ξ

reflects the growing radial pressure—or equivalently the
effective radial temperature "/

√
1 + ξ—obtained by assum-

ing ξ < 0. In Fig. 2, we display the various HBT radii,
together with the ratio Rout/Rside, as functions of the pair
transverse momentum KT . To be more precise, the radii R2

side
and R2

long are the fan.-weighted averages over the freeze-out
hypersurface of y2 = r2 sin2 φ and z2 = τ 2 sinh2 ς , respec-
tively, while R2

out is the average of (x − KT t/EK )
2, where

x = r cos φ and t = τ cosh ς .
As was just mentioned, negative values of ξ amount to a

larger “radial temperature”, and thus to higher thermal veloc-
ities in the outwards direction. Since at the same time the
emission duration barely changes, this naturally leads to a
larger Rout, as observed in the upper left panel, as well as
to a larger ratio Rout/Rside (lower right panel) In turn, the
longitudinal radius Rlong shown in the lower left panel is
to a large extent unaffected by ξ ; this could be anticipated
since the longitudinal part of the occupation factor remains
unchanged. On the other hand, the behaviour of the sidewards
radius Rside with varying ξ seen in the upper right panel of
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Fig. 2 HBT radii for fixed " and varying anisotropy parameter ξ . Top left Rout, top right Rside, bottom left Rlong, bottom right ratio Rout/Rside
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Transverse momentum spectrum for 
different: 

• 𝜉 decreasing         more fast 
particles, due to higher 
effective pressure

𝜉 values (𝛬,𝜉)-pairsEur. Phys. J. C (2015) 75 :275 Page 5 of 7 275
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Fig. 3 Elliptic flow v2(pt ) for fixed ! and varying anisotropy param-
eter ξ

Fig. 2 is more involved, and we did not find a satisfactory
explanation describing all its details.

The transverse-momentum dependence of elliptic flow
v2 for various ξ values is shown in Fig. 3; the triangular
flow v3 follows exactly the same trend, so that we do not
show it. Thus, anisotropic flow decreases when ξ becomes
more negative, that is, as the radial temperature grows. This
behaviour reflects the fact that an increase in random ther-
mal motion tends to dilute the effect of directed collective
behaviour encoded in the flow velocity and its anisotropies,
i.e., it diminishes the vn values, as seen here.

Before going any further, let us note that in a more com-
plete approach, the local anisotropy parametrised in this work
by ξ should not be uniform, but rather position-dependent.
In particular, ξ (or a similar parameter) would normally be
a function of the azimuthal angle φ, parallelling the cor-
responding dependence of the velocity profile, as we now
argue.2 The fluid–particle conversion, whose modelling ξ is
supposed to facilitate, roughly happens when the fluid expan-
sion rate ∇µuµ(x) becomes comparable to that of elastic
scatterings. Since the flow velocity varies with φ, so does the
expansion rate, which motivates an azimuthal dependence
of ξ . On the other hand, the scattering rate depends on the
particle density, obtained by integrating the occupancy factor
over momentum, and on the relative velocity of particles. As
follows from a straightforward change of integration vari-
able [16], the density is inversely proportional to

√
1 + ξ(x),

thus it is a priori φ-dependent. In turn, the typical relative
velocity is controlled by the (effective) temperature(s) of
the decoupling medium, thus function of φ as well…All in
all, every relevant physical quantity depends on azimuth, so
it is non-trivial—and within the scope of this paper rather
academic—to determine the actual dependence of ξ . In any

2 Similarly, ! also might depend on φ, yet we leave this possibility
aside to simplify the discussion.
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Fig. 4 Transverse spectra for various choices of ! and ξ

case, there will be such a dependence, which will affect the
anisotropic flow coefficients vn . The results shown in Figs. 3
and 6 are thus to be taken with a grain of salt, since they
neglect this ingredient.

After having investigated the influence of ξ when all other
parameters are fixed, we now want to illustrate the degen-
eracy introduced by this new parameter, showing that very
similar values of the observables can be obtained with dif-
ferent pairs (!, ξ). Note that we did not attempt to optimise
the results we now report by fine tuning the parameters, as
will be made apparent by the values of the latter.

In Fig. 4, we display the transverse-momentum spectra
for four sets of values of (!, ξ), with ! varying between
130 and 160 MeV and ξ ranging from −0.5 to 0.3. In all
four cases, the values of all other parameters are the same
as above, in particular ūmax = 1. All four curves are barely
distinguishable below pT = 1.5 GeV, above which that with
(! = 130 MeV, ξ = −0.5) starts curving up. The spectrum
for (! = 140 MeV, ξ = −0.25) only starts to differ from
those with larger ! from about 2 GeV onwards, while the
remaining two stay very close up to at least 3 GeV. In addition,
we show in the same figure the spectrum for (! = 130 MeV,
ξ = −0.5) and a different flow velocity, namely with ūmax =
0.8. The change in ūmax makes the spectrum almost collapse
on that for (! = 150 MeV, ξ = 0), with at most a 15 %
relative difference over the whole momentum range.

The HBT radii Rout and Rside and the elliptic flowv2 for the
same sets of parameters as in Fig. 4 are, respectively, shown
in Figs. 5 and 6. As in the case of the transverse spectra,
the values of Rout or v2 for all four pairs (!, ξ) in the case
ūmax = 1 are very close to each other, with (! = 130 MeV,
ξ = −0.5) being most apart from the other three. We also
include the result of the computation with ūmax = 0.8 which
gives a good approximation to the pT -distribution: for v2, it
basically makes no difference with respect to the case ūmax =
1, whereas the departure is more marked for Rout.
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• Varying "temperatures" 
𝛬 at freeze out, but 
nearly same spectrum
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Anisotropic flow coefficients
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Elliptic flow     for different

• Variation of parameters 
gives nearly the same 
observables
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All in all, the results for transverse-momentum distribu-
tions, Rout, and v2 support our claim that introducing an extra
parameter opens a much wider range for the “freeze-out tem-
perature”, here !, without affecting drastically the values of
the observables.

In contrast, the sidewards HBT radius Rside displayed in
the bottom panel of Fig. 5 is much more sensitive to the choice
of decoupling parameters (!, ξ). This is actually somewhat
reassuring, since femtoscopic measurements are precisely
designed to probe the space-time configuration at decou-
pling [33].

4 Discussion

We have argued that there are two main motivations for
resorting to an anisotropic momentum distribution to describe
the transition from usual dissipative fluid dynamics to a
particle description at the end of the evolution of the fire-
ball created in ultrarelativistic heavy-ion collisions. Firstly,
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Fig. 6 Elliptic flow for various choices of ! and ξ

this ansatz is supported by nonrelativistic studies of freeze-
out [24]. Secondly, this could help diminish the sensitivity of
computed observables on the parameters introduced by the
decoupling prescription, and thus lead to a smoother match-
ing between models, in the spirit of seeing fluid dynamics
emerging as the effective theory of some underlying, more
microscopic dynamics.

As a matter of fact, our findings for transverse spectra,
Rout, and v2 (Figs. 4, 5, 6) support the idea that introduc-
ing an extra parameter, which governs the local momentum
anisotropy at decoupling, opens a much wider range for the
“freeze-out temperature”, here !, without changing signifi-
cantly the values of the observables. This is admittedly not
too surprising, since we introduced one new degree of free-
dom. Yet at the risk of repeating ourselves, it emphasises
the fact that the “freeze-out temperature” is just a parameter
for switching between two models, not a real physical tem-
perature determined by some “critical”—in a loose sense—
energy or entropy density for which the medium properties
change drastically. Being such a parameter—like say a renor-
malisation scale—, it may not have a dramatic impact on
measurable quantities.

Accordingly, it seems possible to find a whole region of
parameters to which the “early time” signals like anisotropic
flow—which carry information on the properties of the fire-
ball along its whole evolution [34], rather than on decoupling
itself—are to a large extent insensitive. On the other hand,
some sensitivity remains for the observables which are gov-
erned by the freeze-out process.

In the present exploratory study, we postulated the asym-
metric form of the occupation factor at decoupling fan., and
investigated some of the consequences within a toy model.
The actual form of fan., together with that of the associ-
ated hydrodynamical quantities, still has to be calculated in
a more microscopic approach [27]. This involves at the same
time a discussion of the freeze-out hypersurface #, whose
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eter ξ

Fig. 2 is more involved, and we did not find a satisfactory
explanation describing all its details.

The transverse-momentum dependence of elliptic flow
v2 for various ξ values is shown in Fig. 3; the triangular
flow v3 follows exactly the same trend, so that we do not
show it. Thus, anisotropic flow decreases when ξ becomes
more negative, that is, as the radial temperature grows. This
behaviour reflects the fact that an increase in random ther-
mal motion tends to dilute the effect of directed collective
behaviour encoded in the flow velocity and its anisotropies,
i.e., it diminishes the vn values, as seen here.

Before going any further, let us note that in a more com-
plete approach, the local anisotropy parametrised in this work
by ξ should not be uniform, but rather position-dependent.
In particular, ξ (or a similar parameter) would normally be
a function of the azimuthal angle φ, parallelling the cor-
responding dependence of the velocity profile, as we now
argue.2 The fluid–particle conversion, whose modelling ξ is
supposed to facilitate, roughly happens when the fluid expan-
sion rate ∇µuµ(x) becomes comparable to that of elastic
scatterings. Since the flow velocity varies with φ, so does the
expansion rate, which motivates an azimuthal dependence
of ξ . On the other hand, the scattering rate depends on the
particle density, obtained by integrating the occupancy factor
over momentum, and on the relative velocity of particles. As
follows from a straightforward change of integration vari-
able [16], the density is inversely proportional to

√
1 + ξ(x),

thus it is a priori φ-dependent. In turn, the typical relative
velocity is controlled by the (effective) temperature(s) of
the decoupling medium, thus function of φ as well…All in
all, every relevant physical quantity depends on azimuth, so
it is non-trivial—and within the scope of this paper rather
academic—to determine the actual dependence of ξ . In any

2 Similarly, ! also might depend on φ, yet we leave this possibility
aside to simplify the discussion.

Λ = 130 MeV, ξ = --0.5, --umax= 0.8

0 1 2 3
pT (GeV)

0.1

1

10

102

103

d N
/dp

T  (
a.

u.
)

Λ = 160 MeV, ξ = 0.3
Λ = 150 MeV, ξ = 0
Λ = 140 MeV, ξ = --0.25
Λ = 130 MeV, ξ = --0.5

all with --umax= 1

Fig. 4 Transverse spectra for various choices of ! and ξ

case, there will be such a dependence, which will affect the
anisotropic flow coefficients vn . The results shown in Figs. 3
and 6 are thus to be taken with a grain of salt, since they
neglect this ingredient.

After having investigated the influence of ξ when all other
parameters are fixed, we now want to illustrate the degen-
eracy introduced by this new parameter, showing that very
similar values of the observables can be obtained with dif-
ferent pairs (!, ξ). Note that we did not attempt to optimise
the results we now report by fine tuning the parameters, as
will be made apparent by the values of the latter.

In Fig. 4, we display the transverse-momentum spectra
for four sets of values of (!, ξ), with ! varying between
130 and 160 MeV and ξ ranging from −0.5 to 0.3. In all
four cases, the values of all other parameters are the same
as above, in particular ūmax = 1. All four curves are barely
distinguishable below pT = 1.5 GeV, above which that with
(! = 130 MeV, ξ = −0.5) starts curving up. The spectrum
for (! = 140 MeV, ξ = −0.25) only starts to differ from
those with larger ! from about 2 GeV onwards, while the
remaining two stay very close up to at least 3 GeV. In addition,
we show in the same figure the spectrum for (! = 130 MeV,
ξ = −0.5) and a different flow velocity, namely with ūmax =
0.8. The change in ūmax makes the spectrum almost collapse
on that for (! = 150 MeV, ξ = 0), with at most a 15 %
relative difference over the whole momentum range.

The HBT radii Rout and Rside and the elliptic flowv2 for the
same sets of parameters as in Fig. 4 are, respectively, shown
in Figs. 5 and 6. As in the case of the transverse spectra,
the values of Rout or v2 for all four pairs (!, ξ) in the case
ūmax = 1 are very close to each other, with (! = 130 MeV,
ξ = −0.5) being most apart from the other three. We also
include the result of the computation with ūmax = 0.8 which
gives a good approximation to the pT -distribution: for v2, it
basically makes no difference with respect to the case ūmax =
1, whereas the departure is more marked for Rout.
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• Higher anisotropy leads to 
smaller anisotropic flow 

•     and     follow same trendv3 v4
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Hanbury-Brown Twiss radii
• Computation of HBT radii:

7 HBT- Korrelations-Radien

einfacht sich ~v so, dass nur noch zwei nicht verschwindende Komponenten vorliegen.

~v =

0

BB@

v
out

0

v
long

1

CCA (7.24)

Zuletzt kann man die nichtverschwindenden Komponenten von R2
ij

bestimmen als:

R2
out

= h(x̃� v
out

t̃)2i (7.25)

R2
side

= h(ỹ)2i (7.26)

R2
long

= h(z̃)2i (7.27)

Wobei in den Formeln (7.25) bis (7.27) zusätzlich die Symmetrie der Boostinvarianz

berücksichtigt wurde43.

43Für eine detaillierte Rechnung sei auch hier verwiesen auf [3][Kapitel 17.2.2.1, S.254].
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7.4 Gauß’scher Ansatz für die Emissionsfunktion S(xµ,~k)

Dabei steht N (~k) für einen Normierungsfaktor. x̃µ(~k) kennzeichnet die Abweichung der

Raum-Zeitkoordinate von ihrem Mittelwert. Formell ist diese wie folgt definiert:

x̃µ(~k) = xµ � x̄µ(~k) (7.18)

Über Symmetrie-Überlegungen, die im Wesentlichen aus einer Diagonalisierung der Matrix

B
µ⌫

(~k) bestehen und ausführlich in [3][S.250 ↵] dargestellt sind, gelangt man42 zu dem

Ergebnis:

C(~k, ~q) = 1 + e�q

µ (B�1)
µ⌫

(~k) q

⌫

(7.19)

Mit Hilfe des Ausdrucks:

(B�1)
µ⌫

(~k) = hx̃
µ

x̃
⌫

i(~k) , (7.20)

wobei h...i eine Mittelung bezüglich der Emissionsfunktion darstellt, in Formeln:

hXi =
R
d4x X S(xµ,~k)
R
d4x S(xµ,~k)

(7.21)

, kann man die Korrelationsfunktion C(~k, ~q) weiter umschreiben. Letztendlich sollte man

auch noch ein drittes Mal die Tatsache, dass die detektierten Teilchen alle auf der Mas-

senschale liegen, berücksichtigen. Alles zusammen führt dann zu:

C(~k, ~q) = 1 + e�
P3

i,j=1 q
i

q

j

R

2
ij

(~k) (7.22)

Wobei R2
ij

(~k) eine Mittelung der Abweichungen darstellt.

R2
ij

(~k) = h(x̃i � vit̃)(x̃j � vj t̃)i (7.23)

Dabei gilt zusätzlich: vi = k

i

k

0 . Somit kann vi als Geschwindigkeitskomponente interpretiert

werden. Mit Ausdruck (7.23) liegt mir eine 9-komponentige Matrix vor. Eine kurze Ana-

lyse der Einträge dieser Matrix verdeutlicht, dass diese die Dimension einer Länge haben.

Die Einträge heißen “HBT-Radien”. Betrachtet man den Ausdruck (7.23), so stellt man

schnell fest, dass R2
ij

(~k) symmetrisch unter Vertauschung von i und j ist. Damit reduzieren

sich die 9-Komponenten zu nur noch 6 unabhängigen.

Eine weitere Vereinfachung für die Berechnung der HBT-Radien tritt ein, wenn man in

ein Bezugssystem übergeht, in dem sich die Impuls-Komponenten und damit die Kom-

ponenten von ~v weiter vereinfachen. Dabei handelt es sich um das, oben schon genutzte,

Out-Side-Long-System, welches natürlich nicht mehr das Laborsystem ist. In diesem ver-

42Weiterhin unter der Annahme, dass (7.15) gilt.
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7 HBT- Korrelations-Radien

7 HBT- Korrelations-Radien

7.1 Allgemeine Einleitung zur Korrelationsfunktion

Über die Bestimmung der Hanbury-Brown und Twiss (HBT) - Radien von Pionen kann

man Informationen erhalten, wie Wechselwirkungsregionen in der Raumzeit ausgedehnt

sind, beziehungsweise kurz nach der Kollision waren. Dabei konzentriert man sich auf

Pionen, da diese in großen Zahlen gemessen werden35. Die Grundidee der HBT-Radien

beruht auf der Interferenz von Wellenfunktionen im Rahmen der Quantenmechanik. Lie-

gen zwei Pionen im Phasenraum dicht beieinander, so kommt es zu einer Überlappung

beider Wellenfunktionen. Diese Überlappung führt zu einer Interferenz zwischen den bei-

den Wellenfunktionen, die wiederum als Korrelation zwischen den beiden Teilchen expe-

rimentell gemessen werden kann. Für die HBT-Radien-Bestimmung betrachten wir die

Teilchen also zum ersten Mal in dieser Ausarbeitung als quantenmechanische Wellenfunk-

tion. Man spricht häufig auch von Pion-Interferometrie, wobei man bei diesem Ausdruck

bedenken muss, dass man Intensitäten vergleicht. Bei den Herleitungen und Rechnungen

in diesem Kapitel werde ich mich stark an [3] orientieren. Eine kurze Zusammenfassung

aller relevanten Formeln findet man aber auch in [18][S.4 f]. Sehr gut ist ebenfalls die

Verö↵entlichung [23], welche in ihrer Ausführlichkeit der Rechnungen an eine Vorlesung

heranreicht.

Eine zentrale Rolle in diesem Formalismus kommt der Emissions-Funktion S(xµ, ~p) zuteil.

Diese ist wie folgt definiert:

S(xµ, ~p) =

Z
pµ d⌃

µ

f(~p, x0µ) �(4)(x0µ � xµ) (7.1)

Die rechte Seite dieser Gleichung weist große Ähnlichkeit zu Gleichung (5.4) auf. Durch

den Einbau der vierdimensionalen Dirac-Delta-Distribution �(4) kann man nun jedoch

andere Informationen erhalten, als in jenem Kapitel. Jetzt steht uns mit Formel (7.1)

die Information zur Verfügung, wie viele Teilchen (Pionen) in einem Punkt (xµ, pµ) im

Phasenraum für eine Verteilungsfunktion f(~p, xµ) pro Zeit emittiert werden.

Die Verteilungsfunktion ist nur vom Dreierimpuls ~p abhängig, da sie für emittierte Teilchen

auf der Massenschale formuliert ist. Somit gilt für diese die Energie-Impuls-Beziehung und

die Energie stellt keinen Freiheitsgrad mehr dar. Zu Formel (5.4) gelangt man, indem man

die Emissionsfunktion (7.1) über alle Viererorte xµ integriert36. In Formeln ausgedrückt

bedeutet dass,

(E
p

)
dN

d~p
t

=

Z
d4x S(xµ, ~p)

����
y=0

(7.2)

35Typischer Weise werden in Schwerionenkollisionen etwa 102 bis 103 Pionen produziert. (Quelle: [3][Ka-
pitel 17, S. 245]).

36Dabei ist natürlich zu bedenken, dass (5.4) für y = 0 formuliert ist.
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• Averaging:

• Source-function:
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HBT radii for different 
anisotropy parameter values

•        varies due to higher radial thermal motion 

•         nearly constant
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to deviations from the almost exponential shape valid in the
isotropic case. More precisely, the spectrum becomes harder
when ξ goes to increasingly negative values. This clearly
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reflects the growing radial pressure—or equivalently the
effective radial temperature "/

√
1 + ξ—obtained by assum-

ing ξ < 0. In Fig. 2, we display the various HBT radii,
together with the ratio Rout/Rside, as functions of the pair
transverse momentum KT . To be more precise, the radii R2

side
and R2

long are the fan.-weighted averages over the freeze-out
hypersurface of y2 = r2 sin2 φ and z2 = τ 2 sinh2 ς , respec-
tively, while R2

out is the average of (x − KT t/EK )
2, where

x = r cos φ and t = τ cosh ς .
As was just mentioned, negative values of ξ amount to a

larger “radial temperature”, and thus to higher thermal veloc-
ities in the outwards direction. Since at the same time the
emission duration barely changes, this naturally leads to a
larger Rout, as observed in the upper left panel, as well as
to a larger ratio Rout/Rside (lower right panel) In turn, the
longitudinal radius Rlong shown in the lower left panel is
to a large extent unaffected by ξ ; this could be anticipated
since the longitudinal part of the occupation factor remains
unchanged. On the other hand, the behaviour of the sidewards
radius Rside with varying ξ seen in the upper right panel of
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HBT radii for different (𝛬,𝜉)-
pairs

• Small variation of 

•         very sensitive to parameter pair
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Fig. 5 HBT radii Rout (top panel) and Rside (bottom panel) for various
choices (!, ξ )

All in all, the results for transverse-momentum distribu-
tions, Rout, and v2 support our claim that introducing an extra
parameter opens a much wider range for the “freeze-out tem-
perature”, here !, without affecting drastically the values of
the observables.

In contrast, the sidewards HBT radius Rside displayed in
the bottom panel of Fig. 5 is much more sensitive to the choice
of decoupling parameters (!, ξ). This is actually somewhat
reassuring, since femtoscopic measurements are precisely
designed to probe the space-time configuration at decou-
pling [33].

4 Discussion

We have argued that there are two main motivations for
resorting to an anisotropic momentum distribution to describe
the transition from usual dissipative fluid dynamics to a
particle description at the end of the evolution of the fire-
ball created in ultrarelativistic heavy-ion collisions. Firstly,
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Fig. 6 Elliptic flow for various choices of ! and ξ

this ansatz is supported by nonrelativistic studies of freeze-
out [24]. Secondly, this could help diminish the sensitivity of
computed observables on the parameters introduced by the
decoupling prescription, and thus lead to a smoother match-
ing between models, in the spirit of seeing fluid dynamics
emerging as the effective theory of some underlying, more
microscopic dynamics.

As a matter of fact, our findings for transverse spectra,
Rout, and v2 (Figs. 4, 5, 6) support the idea that introduc-
ing an extra parameter, which governs the local momentum
anisotropy at decoupling, opens a much wider range for the
“freeze-out temperature”, here !, without changing signifi-
cantly the values of the observables. This is admittedly not
too surprising, since we introduced one new degree of free-
dom. Yet at the risk of repeating ourselves, it emphasises
the fact that the “freeze-out temperature” is just a parameter
for switching between two models, not a real physical tem-
perature determined by some “critical”—in a loose sense—
energy or entropy density for which the medium properties
change drastically. Being such a parameter—like say a renor-
malisation scale—, it may not have a dramatic impact on
measurable quantities.

Accordingly, it seems possible to find a whole region of
parameters to which the “early time” signals like anisotropic
flow—which carry information on the properties of the fire-
ball along its whole evolution [34], rather than on decoupling
itself—are to a large extent insensitive. On the other hand,
some sensitivity remains for the observables which are gov-
erned by the freeze-out process.

In the present exploratory study, we postulated the asym-
metric form of the occupation factor at decoupling fan., and
investigated some of the consequences within a toy model.
The actual form of fan., together with that of the associ-
ated hydrodynamical quantities, still has to be calculated in
a more microscopic approach [27]. This involves at the same
time a discussion of the freeze-out hypersurface #, whose
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this ansatz is supported by nonrelativistic studies of freeze-
out [24]. Secondly, this could help diminish the sensitivity of
computed observables on the parameters introduced by the
decoupling prescription, and thus lead to a smoother match-
ing between models, in the spirit of seeing fluid dynamics
emerging as the effective theory of some underlying, more
microscopic dynamics.

As a matter of fact, our findings for transverse spectra,
Rout, and v2 (Figs. 4, 5, 6) support the idea that introduc-
ing an extra parameter, which governs the local momentum
anisotropy at decoupling, opens a much wider range for the
“freeze-out temperature”, here !, without changing signifi-
cantly the values of the observables. This is admittedly not
too surprising, since we introduced one new degree of free-
dom. Yet at the risk of repeating ourselves, it emphasises
the fact that the “freeze-out temperature” is just a parameter
for switching between two models, not a real physical tem-
perature determined by some “critical”—in a loose sense—
energy or entropy density for which the medium properties
change drastically. Being such a parameter—like say a renor-
malisation scale—, it may not have a dramatic impact on
measurable quantities.

Accordingly, it seems possible to find a whole region of
parameters to which the “early time” signals like anisotropic
flow—which carry information on the properties of the fire-
ball along its whole evolution [34], rather than on decoupling
itself—are to a large extent insensitive. On the other hand,
some sensitivity remains for the observables which are gov-
erned by the freeze-out process.

In the present exploratory study, we postulated the asym-
metric form of the occupation factor at decoupling fan., and
investigated some of the consequences within a toy model.
The actual form of fan., together with that of the associ-
ated hydrodynamical quantities, still has to be calculated in
a more microscopic approach [27]. This involves at the same
time a discussion of the freeze-out hypersurface #, whose
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Conclusion
• Introduce an anisotropic phase space distribution  

Get additional parameter 𝝃 

• Lower sensitivity of observables on parameters at freeze out 

• Option for a smoother transition from hydro to kinetic theory 

• Further reading: 

1. N. Borghini, SF, C. Lang; Eur. Phys. J. C 75 (2015) 275 

2. Work in preparation 
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