

FACULTY OF NUCLEAR SCIENCES AND PHYSICAL ENGINEERING CTU IN PRAGUE

Study of Drell-Yan pair production on nuclear targets

Michal Krelina

FNSPE, Czech Technical University in Prague

In collaboration with **V.P. Goncalves, J. Nemchik, R. Pasechnik**

Hot Quarks 2016, South Padre Island, TX, USA, September 17th, 2016

Outline

-
-
-

• Introduction
• Motivation
• Coherence length
• Initial state interaction effects
• Color dipole approach
• Basics
• Green function method
• Gluon shadowing
• Results
• Fixed-target experiment
• AFTER@LHC
• RHIC
• LHC (LH

-
-
-

-
-
-
-

Motivation

Motivation

- **Goal:**
	- Study initial-state effects (cold nuclear matter effects)
- **Tools:**
	- Drell-Yan (DY) process
		- No final-state interactions and fragmentation (no absorption or energy loss)
		- Variety of dilepton invariant masses $M_{l\bar{l}}$
- **Observable:**
	- Nuclear modification factor \overline{R}

$$
_{pA}=\frac{\sigma^{pA}}{A\cdot\sigma^{pp}}
$$

- As a function of $M_{l\bar{l}}$, rapidity η ,...
- **Method:**
	- Color dipole approach

Initial-state effects

- What are **initial-state effects**?
	- Effects occurring before the hard scattering
- Type of effects
	- **Coherence effects** (interaction with the nucleus as one object)
		- e.g.: **nuclear shadowing**, CGC
	- **Non-coherence effects** (interactions with inner structure of the nucleus)
		- e.g.: EMC effect, **initial state interactions effects**

Coherence length

- The dynamics of coherence effects is controlled by the *coherence length (CL)*
	- coherence length = lifetime of γ^*q fluctuation within the color dipole approach

• **Drell-Yan CL**

$$
l_c = \frac{1}{x_2 m_N} \frac{(M_{l\bar{l}}^2 + p_T^2)(1 - \alpha)}{(1 - \alpha)M_{l\bar{l}}^2 + \alpha^2 m_N^2 + p_T^2}
$$

- Coherence length
	- \bullet $\vert l_c \gg R_A \vert$, long coherence length (LCL) limit
		- Nuclear shadowing is maximal
	- $l_c < 1 \div 2$ fm , short coherence length (SCL) limit
		- No nuclear shadowing

Mean $CL - x_F = 0.0$

CTU

Mean $CL - x_F = 0.6$

8

 $\overline{\text{c}$ TU

Coherence length

- What about the *white* area between the LCL and SCL regions?
	- Generalized path-integral (Green function) formulation should be used
	- This formulation **includes also SCL and LCL**
- **Usage and prospects**
	- Experiments: FNAL fixed-target experiments, AFTER@LHC, LHCb-gas program, RHIC, …
	- Calculation of gluon shadowing
	- Incorporation of absorption in the medium
		- Important for heavy-ion collisions and strongly interacting probes

Color dipole approach

Color dipole approach (CDA)

- Formulated in the target rest frame
- Drell-Yan process looks like ∗ **-Bremsstrahlung** off a projectile quark
- Cross section = **convolution** of PDFs, light-cone wave function (of the lowest Fock state $|q\gamma^*\rangle$) and dipole cross section

Color dipole approach (CDA)

- Dipole cross section
	- Extracted from DIS, more parametrizations on the market
	- The weakest part of CDA
	- GBW K.J. Golec-Biernat, M. Wusthoff, Phys. Rev. D59, 014017 (1998)
	- BGBK (DGLAP evolution) J. Bartels, K. Golec-Biernat, and H. Kowalski, Phys. Rev. D66, 014001 (2002)
	- rcBK (BK evolution) J.L. Albacete, N. Armesto, J.G. Milhano and C.A. Salgado, Phys. Rev. D80, 034031 (2009)
- pp cross section

$$
\frac{d^2 \sigma^{(pp \to llX)}}{dM^2 dx_F} = \frac{d\sigma^{(\gamma^* \to ll)}}{dM^2} \frac{x_1}{x_1 + x_2} \int_{x_1}^1 \frac{d\alpha}{\alpha^2} \sum_q \left(f_q \left(\frac{x_1}{\alpha} \right) + f_{\overline{q}} \left(\frac{x_1}{\alpha} \right) \right) \frac{d\sigma^{(qN \to \gamma^*X)}}{d \ln \alpha}
$$
\n
$$
\frac{d\sigma^{(qN \to \gamma^*X)}}{d \ln \alpha} = \int d^2 \rho \left| \Psi_{\gamma^*q}(\alpha, \vec{\rho}, M^2) \right|^2 \sigma_{q\overline{q}}^N(\alpha \vec{\rho}, \alpha)
$$

- Advantages of CDA
	- Parametrizations from DIS only (no nPDF, …)
	- No K factor
	- No limitation by pQCD

Proton-nucleus collisions

- Well-known formulas for LCL, SCL
- General expression
	- $d\sigma^{(qA\rightarrow \gamma^*X)}$ $d \ln \alpha$ $=$ A $d\sigma^{(qN\to\gamma^*X)}$ $d \ln \alpha$ − 1 2 Re −∞ ∞ dz_1 \overline{z}_1 ∞ $dz_2 \int d^2b d^2 \rho_1 d^2 \rho_2$ $\times \Psi_{\gamma q}^{*}(\alpha, \vec{\rho}_2) \rho_A(b, z_2) \sigma_{q\bar{q}}^N(\alpha \rho_2)$ $G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1)$
		- \times $\rho_A(b,z_1)\sigma_{q\bar{q}}^N(\alpha\rho_1)\Psi_{\gamma q}(\alpha,\vec{\rho}_1)$
		- $b...$ impact parameter
		- $\rho_A(b, z_1)$ … nuclear density
		- B. Z. Kopeliovich, A. V. Tarasov, and A. Schafer, Phys.Rev. C59, 1609 (1999)
- Terms:
	- *First*, *A*-times single scattering cross section
	- *Second*, represents correction term

Green function technique

- $G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1)$... Green function
	- Describes propagation of a $|\gamma^* q\rangle$ Fock state from longitudinal position z_1 to z_2 through the nucleus with initial and final separation $\vec{\boldsymbol{\rho}}_1$ and $\vec{\boldsymbol{\rho}}_2$, where $| \boldsymbol{\gamma}^* \boldsymbol{q} \rangle$ interacts with bound nucleons via dipole cross section $\bm{\sigma}_{\bm{q}\overline{\bm{q}}}^{\bm{N}}(\vec{\bm{\rho}})$ which depends on the local transverse separation \vec{p}
	- Treats the **coherence length exactly**

CTU

Green function

• Corresponds to the two-dimensional **Schrödinger equation** with potential

$$
\left[i\frac{\partial}{\partial z_2} + \frac{\Delta_T(\vec{\rho}_2) - \eta^2}{2E_q\alpha(1-\alpha)} - V(z_2, \vec{\rho}_2, \alpha)\right] G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1) = 0
$$

- z_2 ... plays a role of the time
- $\Delta_T(\vec\rho_2)$... 2D Laplacian acts on $\vec\rho_2$
- **Boundary condition**:

•
$$
G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1)|_{z_1 = z_2} = \delta^2(\vec{\rho}_2 - \vec{\rho}_1)
$$

• **Imaginary potential**

$$
\bullet \quad V(z_2, \vec{\rho}_2, \alpha) = -\frac{i}{2} \rho_A(b, z_2) \sigma_{q\bar{q}}^N(\alpha \vec{\rho}_2, x)
$$

Gluon shadowing (GS)

- We use the lowest Fock component $|\gamma^* q\rangle$
	- Therefore the nuclear CDA formalism contains quark shadowing only
- **Gluon shadowing** dominates at **very small**
	- At very high collision energies, e.g. LHC
	- At lower energies in combination with forward rapidities
- GS is calculated externally and implemented as a correction of the dipole cross section
	- Considering $|\gamma^* qG\rangle$ Fock state
	- B.Z. Kopeliovich, A. Schaefer, and A.V. Tarasov, Phys. Rev. D62, 054022 (2000)

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Results

Results: $R_{pA}(x_1) - E886, \sqrt{s} = 38.8 \text{ GeV}$

M. Krelina, HQ2016, September 17th, 2016

Results: $R_{pA}(\eta)$ – AFTER, \sqrt{s} = 115 GeV

20

Results: $R_{pA}(M_{l\bar{l}})$ – AFTER, $\sqrt{s} = 115$ GeV

Results: $R_{pA}(M_{l\bar{l}})$ – RHIC, \sqrt{s} = 200 GeV

M. Krelina, HQ2016, September 17th, 2016

23

CTU

M. Krelina, HQ2016, September 17th, 2016

24

CTU

Conclusions

Conclusions

- DY is an **ideal tool** for study of nuclear effects
- \bullet R_{pA} is controlled by the **coherence length** which is correlated with the nuclear shadowing
- Green function formalism is important for $\sqrt{s} \leq 200$ GeV
- Green function method successfully **reproduces the SCL and LCL predictions**in the corresponding kinematic regimes
- ISI effects cause a **strong suppression at forward rapidities**
- We presented predictions
	- **RHIC,** and **LHCb-gas** program and for planned experiment **AFTER@LHC**,
- The R_{pA} as a function of dilepton invariant mass $M_{l\bar{l}}$ is a **good probe** for both the **coherence and noncoherence sources of suppression** allowing to reduce or eliminate the shadowing-ISI mixing

Thanks for your attention.

27

CZECH TECHNICAL UNIVERSITY

Backups slides

Kinematics

• Fractions kinematics

$$
x_1 = \frac{1}{2} \left(\sqrt{x_F^2 + 4\tau} + x_F \right) = \sqrt{\tau} \exp(y),
$$

$$
x_2 = \frac{1}{2} \left(\sqrt{x_F^2 + 4\tau} - x_F \right) = \sqrt{\tau} \exp(-y),
$$

$$
\tau = \frac{M^2 + p_T^2}{s} = x_1 x_2,
$$

$$
x_F = x_1 - x_2.
$$

• Scale

$$
Q^2 = p_T^2 + (1 - x_1)M^2
$$

• Gluon shadowing

$$
\sigma_{q\bar{q}}^N(\alpha \rho, x) \Rightarrow \sigma_{q\bar{q}}^N(\alpha \rho, x) R_G(x, Q^2)
$$

