

FACULTY OF NUCLEAR SCIENCES AND PHYSICAL ENGINEERING CTU IN PRAGUE

Study of Drell-Yan pair production on nuclear targets

Michal Krelina

FNSPE, Czech Technical University in Prague

In collaboration with V.P. Goncalves, J. Nemchik, R. Pasechnik

Hot Quarks 2016, South Padre Island, TX, USA, September 17th, 2016

Outline

Introduction

- Motivation
- Coherence length
- Initial state interaction effects

Color dipole approach

- Basics
- Green function method
- Gluon shadowing

Results

- Fixed-target experiment
- AFTER@LHC
- RHIC
- LHC (LHCb-gas program)

Conclusions

Motivation

Motivation

- Goal:
 - Study initial-state effects (cold nuclear matter effects)
- Tools:
 - Drell-Yan (DY) process
 - No final-state interactions and fragmentation (no absorption or energy loss)
 - Variety of dilepton invariant masses $M_{l\bar{l}}$
- Observable:
 - Nuclear modification factor
 R

$$_{pA} = \frac{\sigma^{pA}}{A \cdot \sigma^{pp}}$$

- As a function of $M_{l\bar{l}}$, rapidity η ,...
- Method:
 - Color dipole approach

Initial-state effects

- What are **initial-state effects**?
 - Effects occurring before the hard scattering
- Type of effects
 - Coherence effects (interaction with the nucleus as one object)
 - e.g.: nuclear shadowing, CGC
 - Non-coherence effects (interactions with inner structure of the nucleus)
 - e.g.: EMC effect, initial state interactions effects

Coherence length

- The dynamics of coherence effects is controlled by the *coherence length (CL)*
 - coherence length = lifetime of $\gamma^* q$ fluctuation within the color dipole approach

Drell-Yan CL

$$l_{c} = \frac{1}{x_{2}m_{N}} \frac{(M_{l\bar{l}}^{2} + p_{T}^{2})(1 - \alpha)}{(1 - \alpha)M_{l\bar{l}}^{2} + \alpha^{2}m_{N}^{2} + p_{T}^{2}}$$

- Coherence length
 - $l_c \gg R_A$, long coherence length (LCL) limit
 - Nuclear shadowing is maximal
 - $l_c < 1 \div 2 \text{ fm}$, short coherence length (SCL) limit
 - No nuclear shadowing

Mean CL – $x_F = 0.0$

сти

Mean CL – $x_F = 0.6$

CZECH TECHNIC UNIVERSITY IN PRAGUE

CTU

Coherence length

- What about the *white* area between the LCL and SCL regions?
 - Generalized path-integral (Green function) formulation should be used
 - This formulation includes also SCL and LCL
- Usage and prospects
 - Experiments: FNAL fixed-target experiments, AFTER@LHC, LHCb-gas program, RHIC, ...
 - Calculation of gluon shadowing
 - Incorporation of absorption in the medium
 - Important for heavy-ion collisions and strongly interacting probes

Color dipole approach

Color dipole approach (CDA)

- Formulated in the target rest frame
- Drell-Yan process looks like γ^* -Bremsstrahlung off a projectile quark
- Cross section = convolution of PDFs, light-cone wave function (of the lowest Fock state |qγ*) and dipole cross section

Color dipole approach (CDA)

- Dipole cross section
 - Extracted from DIS, more parametrizations on the market
 - The weakest part of CDA
 - GBW K.J. Golec-Biernat, M. Wusthoff, Phys. Rev. D59, 014017 (1998)
 - BGBK (DGLAP evolution) J. Bartels, K. Golec-Biernat, and H. Kowalski, Phys. Rev. D66, 014001 (2002)
 - rcBK (BK evolution) J.L. Albacete, N. Armesto, J.G. Milhano and C.A. Salgado, Phys. Rev. D80, 034031 (2009)
- pp cross section

•
$$\frac{d^2 \sigma^{(pp \to llX)}}{dM^2 dx_F} = \frac{d\sigma^{(\gamma^* \to ll)}}{dM^2} \frac{x_1}{x_1 + x_2} \int_{x_1}^1 \frac{d\alpha}{\alpha^2} \sum_q \left(f_q\left(\frac{x_1}{\alpha}\right) + f_{\bar{q}}\left(\frac{x_1}{\alpha}\right) \right) \frac{d\sigma^{(qN \to \gamma^*X)}}{d\ln \alpha}$$

•
$$\frac{d\sigma^{(qN \to \gamma^*X)}}{d\ln \alpha} = \int d^2 \rho \left| \Psi_{\gamma^*q}(\alpha, \vec{\rho}, M^2) \right|^2 \sigma_{q\bar{q}}^N(\alpha \vec{\rho}, x)$$

- Advantages of CDA
 - Parametrizations from DIS only (no nPDF, ...)
 - No K factor
 - No limitation by pQCD

Proton-nucleus collisions

- Well-known formulas for LCL, SCL
- General expression
- $\frac{d\sigma^{(qA\to\gamma^*X)}}{d\ln\alpha} = A \frac{d\sigma^{(qN\to\gamma^*X)}}{d\ln\alpha} \\ -\frac{1}{2} Re \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \int d^2b d^2\rho_1 d^2\rho_2 \\ \times \Psi_{\gamma q}^*(\alpha, \vec{\rho}_2) \rho_A(b, z_2) \sigma_{q\bar{q}}^N(\alpha\rho_2) \quad G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1) \\ \times \rho_A(b, z_1) \sigma_{q\bar{q}}^N(\alpha\rho_1) \Psi_{\gamma q}(\alpha, \vec{\rho}_1)$
 - *b*... impact parameter
 - $\rho_A(b, z_1)$... nuclear density
 - B. Z. Kopeliovich, A. V. Tarasov, and A. Schafer, Phys. Rev. C59, 1609 (1999)
- Terms:
 - First, A-times single scattering cross section
 - Second, represents correction term

CTU

Green function technique

- $G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1)$... Green function
 - Describes propagation of a $|\gamma^*q\rangle$ Fock state from longitudinal position z_1 to z_2 through the nucleus with initial and final separation $\vec{\rho}_1$ and $\vec{\rho}_2$, where $|\gamma^*q\rangle$ interacts with bound nucleons via dipole cross section $\sigma_{q\bar{q}}^N(\vec{\rho})$ which depends on the local transverse separation $\vec{\rho}$
 - Treats the coherence length exactly

CTU

Green function

Corresponds to the two-dimensional
 Schrödinger equation with potential

$$\left[i\frac{\partial}{\partial z_2} + \frac{\Delta_T(\vec{\rho}_2) - \eta^2}{2E_q\alpha(1-\alpha)} - V(z_2, \vec{\rho}_2, \alpha)\right] G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1) = 0$$

- z_2 ... plays a role of the time
- $\Delta_T(\vec{
 ho}_2)$... 2D Laplacian acts on $\vec{
 ho}_2$
- Boundary condition:

•
$$G(\vec{\rho}_2, z_2 | \vec{\rho}_1, z_1) |_{z_1 = z_2} = \delta^2 (\vec{\rho}_2 - \vec{\rho}_1)$$

Imaginary potential

•
$$V(z_2, \vec{\rho}_2, \alpha) = -\frac{i}{2}\rho_A(b, z_2)\sigma_{q\bar{q}}^N(\alpha \vec{\rho}_2, x)$$

Gluon shadowing (GS)

- We use the lowest Fock component $|\gamma^* q
 angle$
 - Therefore the nuclear CDA formalism contains quark shadowing only
- Gluon shadowing dominates at very small x₂
 - At very high collision energies, e.g. LHC
 - At lower energies in combination with forward rapidities
- GS is calculated externally and implemented as a correction of the dipole cross section
 - Considering $|\gamma^* qG\rangle$ Fock state
 - B.Z. Kopeliovich, A. Schaefer, and A.V. Tarasov, Phys. Rev. D62, 054022 (2000)

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Results

18

Results: $R_{pA}(x_1) - E886, \sqrt{s} = 38.8 \text{ GeV}$

Results: $R_{pA}(\eta) - AFTER, \sqrt{s} = 115 \text{ GeV}$

20

Results: $R_{pA}(M_{l\bar{l}}) - \text{RHIC}, \sqrt{s} = 200 \text{ GeV}$

M. Krelina, HQ2016, September 17th, 2016

23

СТU

M. Krelina, HQ2016, September 17th, 2016

24

сти

Conclusions

Conclusions

- DY is an **ideal tool** for study of nuclear effects
- *R*_{pA} is controlled by the **coherence length** which is correlated with the nuclear shadowing
- Green function formalism is important for $\sqrt{s} \leq 200$ GeV
- Green function method successfully reproduces the SCL and LCL predictions in the corresponding kinematic regimes
- ISI effects cause a strong suppression at forward rapidities
- We presented predictions
 - RHIC, and LHCb-gas program and for planned experiment AFTER@LHC,
- The R_{pA} as a function of dilepton invariant mass $M_{l\bar{l}}$ is a **good probe** for both the **coherence and noncoherence sources of suppression** allowing to reduce or eliminate the shadowing-ISI mixing

Thanks for your attention.

Backups slides

Kinematics

Fractions kinematics

$$x_{1} = \frac{1}{2} \left(\sqrt{x_{F}^{2} + 4\tau} + x_{F} \right) = \sqrt{\tau} \exp(y),$$

$$x_{2} = \frac{1}{2} \left(\sqrt{x_{F}^{2} + 4\tau} - x_{F} \right) = \sqrt{\tau} \exp(-y),$$

$$\tau = \frac{M^2 + p_T^2}{s} = x_1 x_2,$$

$$x_F = x_1 - x_2.$$

Scale

$$Q^2 = p_T^2 + (1 - x_1)M^2$$

Gluon shadowing

$$\sigma_{q\bar{q}}^{N}(\alpha\rho, x) \Rightarrow \sigma_{q\bar{q}}^{N}(\alpha\rho, x) R_{G}(x, Q^{2})$$

