Charmonium Production in Pb-Pb Collisions at $\sqrt{s_{NN}}=2.76$ and 5.02 TeV measured with ALICE at the LHC

Hot Quarks 2016, Brownsville, September 12-17

Benjamin Audurier Subatech Laboratory, Nantes, France On behalf of the ALICE Collaboration

Outline

I. Physics Motivations **II.** The ALICE Detector III.Results at $\sqrt{s_{NN}} = 2.76$ TeV 1. Inclusive $J/\psi R_{AA}$ 2. Elliptic flow 3. Low- $p_{\rm T}$ excess IV. Results at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 1. Inclusive $J/\psi R_{AA}$ 2.

- Comparison with $\sqrt{s_{NN}} = 2.76$ results
- Comparison with theoretical models

1

- * Charmonium is produced at the earliest stage of the collision.
- In 1986 Matsui & Satz¹ predicted J/ψ suppression by the QGP through Debye like color screening mechanism.
- Color screening suppression depends on charmonium binding energy and medium temperature
 → <u>Sequential suppression</u>
- * cc̄ cross-section increases at LHC energies → <u>regeneration^{2,3)}.</u>
- charmonium states = <u>good probes</u> <u>of deconfined state of QCD phase</u> <u>diagram.</u>

Matsui & Satz, *J/psi suppression by quark-gluon plasma formation*, Physics Letters B vol.178 n.4
 P. Braun-Munzinger et al. PLB 490 (2000) 196
 R. Thews et al: Phys. Rev. C63 054905 (2001)

- Charmonium also sensitive to cold nuclear matter effects (energy loss, shadowing ...) → Studied in p-Pb collisions.
- A reference is needed to disentangle cold/hot nuclear matter effects from standard production → Studied in p-p collisions.
- * Different sources of charmonium production :
 - * Direct production.
 - Decay from from higher mass charmonium states (~ 24%).
 - Decay from B-hadrons (~ 10%).

← Non-Prompt

Prompt

The results presented here refer to the inclusive J/ψ production.

1) The LHCb Coll., Measurement of the ratio of prompt x_c to J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, arXiv:1204.1462v2 2) The LHCb Coll., Measurement of $\psi(2S)$ meson production in pp collisions at $\sqrt{s} = 7$ TeV, arXiv:1204.1258 3) The LHCb Coll., Measurement of J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, arXiv:1103.0423v2

Observables

* Assumption : $\bigcirc_{Pb} \rightarrow \leftarrow \bigcirc_{Pb} = \langle N_{coll} \rangle \bullet_{p} \rightarrow \leftarrow \bullet_{p}$

The Nuclear Modification Factor

- * If $R_{AA} > 1 \rightarrow \underline{More}$ charmonium produced than expected from pp results.
- * If $R_{AA} = 1 \rightarrow \underline{Same}$ as compared to a superposition of pp.
- * If $R_{AA} < 1 \rightarrow \underline{Less}$ charmonium than expected from pp results.

The Elliptic Flow v2

$$v_n^i(p_t, y) = \langle cos[n(\varphi - \Psi_{RP}]) \rangle^i$$

* J/ ψ produced through the regeneration mechanism should inherit the elliptic flow of the charm quarks in the QGP \rightarrow Positive v₂.

The ALICE Detector

Two decay channels studied in ALICE :

Results in Pb-Pb@2.76 TeV

J/ψ 's R_{AA} versus centrality

- Weaker centrality dependence and smaller suppression for central events in ALICE compared to PHENIX → expected in a regeneration scenario.

Very Low $p_{\rm T}$ excess

- An excess of J/ψ was observed at very low p_T in the most peripheral collisions.
- * Photoproduction mechanism for Pb-Pb collisions with b < 2R was proposed to explain this excess of $J/\psi^{1,2}$.
- * The cut at $p_T > 0.3$ GeV/c is applied to remove ~75% of this non-hadronic contribution.
- *R*_{AA} smaller by 30% at maximum in peripheral bins when applying the previous cut.

1) STARLIGHT website (2013) . http://starlight.hepforge.org/.

2)M. Kusek-Gawenda and A. Szczurek, "Photoproduction of J/ψ mesons in peripheral and semi-central heavy ion collisions," arXiv:1509.03173 [nucl-th].

 J/ψ flow

- * Hint of a J/ ψ flow measured by ALICE while v_2 compatible with zero at RHIC¹⁾.
- * Agreement within uncertainties between data and transport model with regeneration.

1) PRL. 111, 052301 (2013)

In the following, we will present the J/ ψ -> $\mu^+\mu^-$ analysis results for the 2015 data campaign.

Results in Pb-Pb@5.02 TeV

Event and Track Selection

Muon Track selection :

- * $-4 < \eta_{\mu} < -2.5$
- * $17.6 < R_{abs} < 89.5 \text{ cm}$

Reconstructed pairs cut :

* $2.5 < y_{\mu\mu} < 4$

Event selection :

- Collision + muons of opposite sign matching the trigger.
- Beam-gas interaction rejected with V0 and ZDC.
- Vertex determination with SPD.
- Centrality estimation based on a Glauber model fit of the V0 amplitude.

Total Luminosity ~225µb⁻¹

Benjamin Audurier | Hot Quarks 2016 | 14/09/16

- ~7 times more statistics compared to Run-1.
- * J/ ψ yield extracted by fitting the opposite sign dimuon invariant mass spectrum.
- * $<J/\psi>$ and the syst. uncertainties are evaluated from the combination of :
 - * Two fit functions for the signal peak.
 - Two methods to remove the background (empirical fit or mixed-event background subtraction).

pp cross section at $\sqrt{s} = 5.02 \text{ TeV}$ $R_{AA}^{i} = \frac{d^2 N_{J/\psi}^{det,i}/dp_T dy}{\langle T_{AA}^{i} \rangle BR_{J/\psi} + dimuon} A \epsilon^i N_{evt}^{MB,i} \frac{d^2 \sigma_{J/\psi}^{pp,i}/dp_T dy}{d^2 \sigma_{J/\psi}^{pp,i}/dp_T dy}$

- * Data collected during 4 days at $\sqrt{s} = 5.02$ TeV for a total of 106.3 ± 0.1(stat.) ± 2.1 (syst.) nb⁻¹ integrated luminosity.
- Good agreement between data and interpolated cross section values previously used for the p-Pb analysis at $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}.$
- Extended range up to $p_T = 12 \text{ GeV}/c$ * compared to the interpolated cross section

Integrated cross section (*p***_T <12 GeV/c)**: 5.61 ± 0.08 (stat.) ± 0.28 (syst.) µb

arXiv:1606.08197

$R_{\rm AA}^{0-90\%}$ (0 < $p_{\rm T}$ < 8 GeV/c) :	0.66 ± 0.01 (stat.) ± 0.05 (syst.)
$2011 R_{AA}^{0.90\%} (0 < p_{T} < 8 \text{ GeV}/c):$	0.58 ± 0.01 (stat) ±0.09 (syst.)

Higher statistics lead to finer bins in centrality.

- Better control of the syst. uncert.
- Clear J/ψ suppression with no centrality dependence in the most central collisions.
- Effect of the non-prompt component on the inclusive R_{AA:}
- *R*_{AA(non-prompt)} = 0
 All non-prompt J/ψ are suppressed
- R_{AA(prompt)} 10% higher

- *R*_{AA(non-prompt)} = 1
 All non-prompt J/ψ survive
- R_{AA(prompt)} 5% to
 1% lower

Results between $\sqrt{s_{_{NN}}}$ = 2.76 and 5.02 TeV data are compatible within uncertainties

TM1: Nucl. Phys. A859 (2011) 114–125 TM2: Phys. Rev. C89 no. 5, 459 (2014) 054911 Stat. hadronization: NPA 904-905 (2013) 535c Co-movers: Phys. Lett. B731 (2014) 57–63

- * The p_T >0.3 GeV/c cut removes ~80% of the photoproduced J/ ψ .
- * Large uncertainties on the theoretical calculations due mainly to the choice of $\sigma_{c\bar{c}}$.
- * All models include a large amount of regeneration
- A better agreement is found for some transport (Du and Rapp) and co-movers (Ferreiro) models when we consider their upper limit.
- In transport models this corresponds to the absence of nuclear shadowing -> extreme assumption.

Ratio between R_{AA} for $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV

- *R*_{AA} ratio allows some uncertainties on the models to cancel out
- *T_{AA}* uncert. also cancels out for the experimental results
- * Error bands on models correspond to a 5% variation of $\sigma_{c\bar{c}}$
- 2% variation of the ratio when considering the non-prompt contribution
- Ratio value for the most central events : 1.17 ± 0.04 (stat.) ± 0.20 (syst.)

Models are compatible with data within uncertainties showing no clear centrality dependance of the ratio.

Benjamin Audurier | Hot Quarks 2016 | 14/09/16

Hint of an increase of R_{AA} with colliding energy is visible between $2 < p_T < 6 \text{ GeV}/c$

- * Less suppression at low p_T w.r.t high p_T .
- Assuming beauty fully suppressed :
 - * $R_{AA(prompt)}$ expected to be 7% larger for $p_T < 1$ GeV/*c*.
 - * $R_{AA(prompt)}$ expected to be 30% larger for $10 < p_T < 12$ GeV/c.
- Assuming beauty binary scaling :
 - * $R_{AA(prompt)}$ expected to be 2% smaller for $p_T < 1 \text{ GeV}/c$.
 - * $R_{AA(prompt)}$ expected to be 55% smaller for $10 < p_T < 12 \text{ GeV}/c$.

- * The J/ ψ cross section in pp collisions at $\sqrt{s} = 5.02$ TeV has been measured both versus p_T and fully integrated. This result is used as a reference for the R_{AA}
- * The inclusive J/ ψ nuclear modification factor in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at forward rapidity has been measured down to $p_T = 0$ GeV/*c*.
- * The p_T range of the R_{AA} has been extended up to 12 GeV/c.
- * The study of the centrality and p_T dependence of R_{AA} shows :
 - * <u>an increase of the J/ ψ suppression</u> with centrality up to N_{part} ~100 <u>followed by</u> <u>a saturation</u> as for previous results in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.
 - * less suppression at low $p_{\rm T}$ with respect to high $p_{\rm T}$.
- The comparison between $√s_{NN}$ = 2.76 and 5.02 TeV results through R_{AA} ratio shows :
 - * Results are compatible within uncertainties in the full centrality range.
 - * a hint of an increase with colliding energy for R_{AA} versus p_T for $2 < p_T < 6$ GeV/c.
- Data and theoretical models are compatible within uncertainties and support a picture of competing J/ψ suppression and regeneration in the QGP.

Thank you !

J/ψ 's R_{AA} versus centrality

ALICE Coll. PLB 734 (2014) 314

Summary of the Systematic uncertainties for PbPb@5TeV

Source	0-90% p _T <12 GeV/c	p _T (0-20%)	centrality
Signal Extraction	1,8 %	1.2-3.1 %	1.6-2.8 %
MC input	2,0 %	2,0 %	2 %
Tracking eff.	3,0 %	3,0 %	3 %
Trigger eff.	3,6 %	1.5-4.8	3,6 %
Matching Eff.	1 %	1 %	1%
F _{Norm}	0,5 %	0,5 %	0,5 %
<t<sub>AA></t<sub>	3,2 %	3,2 %	3,1-7,6 %
Centrality limits	0 %	0,1 %	0-6,6 %
$\sigma^{pp}_{J/\psi}$ (data)	5,0 %	3-10% + 2.1%	4,9 %

Uncorrelated uncertainties Correlated uncertainties

Source	$0 < p_T < 12 \text{ GeV}/c$	рт
Signal Extraction	3 %	1,5-9,3 %
MC input	2,0 %	0,7-1,5 %
Tracking eff.	1,0 %	1,0 %
Trigger eff.	1,8 %	1,5-1,8 %
Matching Eff.	1 %	1%
Luminosity	2,1 %	2,1 %

Uncorrelated uncertainties **Correlated uncertainties**

Models parameters

model	$\sigma_{c\bar{c}}(mb)$	N-N $\sigma_{c\bar{c}}(\mu b)$	comover $\sigma_{J/\psi}$	Shadowing
Transport	0.57	3.14	-	EPS09
Transport	0.82	3.5	-	EPS09
Stat.	0.45	-	-	EPS09
Comovers	[0.45,0.7]	3.53	0.65	Glauber-Gribov theory

Benjamin Audurier | Hot Quarks 2016 | 14/09/16

- To evaluated the Tracking Efficiency, we use the reconstructed tracks and the redundancy of the tracking chamber.
- Syst. uncert. evaluated from the comparison of data and MC.

Benjamin Audurier | Hot Quarks 2016 | 14/09/16