#### Hot Quarks 2016, South Padre Island



Steffen Weber for the ALICE collaboration

September 14, 2016

# Measurements of J/ $\psi$ production in pp collisions at LHC energies









#### **Outline**



- Physics motivation
- Analysis methods at central and forward rapidity
- Highlights from LHC Run-1
  - J/ψ transverse momentum spectrum
  - J/ψ production versus charged-particle multiplicity
- First look at LHC Run-2 pp data at forward rapidity
- Summary and outlook

### Motivation 1: $J/\psi$ in pp collisions as reference



Charmonium production in pp collisions is a crucial baseline for

- Hot QCD matter effects in nucleus-nucleus collisions:
  - Color-screening
  - (Re)generation
- Additional cold nuclear matter effects already present in proton-nucleus collisions
  - Gluon saturation
  - (Anti-) shadowing
  - Partonic energy loss



P. Braun-Munzinger, J. Stachel: Nature, 448:302–309 (2007)



C. A. Salgado et al.: J.Phys. G39 (2012) 015010

### Motivation 2: $J/\psi$ in pp collisions to understand QCD



Charmonium production is an intrinsically multiscale process:

- Heavy-quark pair production: hard scale → regime of pQCD
- Binding into charmonium: soft scale

Different models try to describe the complex process:

Color Evaporation Model: Based on quark-hadron duality. Cross section of given

quarkonium state proportional to cross section of constituting heavy quark pair, independent of energy,

transverse momentum or rapidity.

• Color Singlet Model: cc produced on-shell with same quantum numbers as

charmonium state → only **C**olor **S**inglet states.

Non-Relativistic QCD: Also Color Octet states taken into account. Expansion

in powers of the relative velocity of the heavy quarks,

fitted in terms of long-range matrix elements.

None of the models provide full description of all aspects of charmonium production, e.g. polarization,  $p_T$  and energy dependence.



#### Sources of J/ψ production





#### Inclusive J/ψ production:



0.9 ALICE, |y<sub>Jy</sub>|<0.9 pp, \(\sigma = 7\) TeV

0.8 \( \text{TLAS}, \|y\_{Jy}|<0.9 \)

0.6 \( 0.5 \)

0.7 \( \text{CMS}, \|y\_{Jy}|<0.9 \)

0.6 \( 0.5 \)

0.7 \( \text{CMS}, \|y\_{Jy}|<0.9 \)

0.8 \( \text{CMS}, \|y\_{Jy}|<0.9 \)

0.9 \( \text{CMS}, \|y\_{Jy}|<0.9 \)

0.1 \( \text{PUB-44630} \)

3 \( \text{JHEP 11 (2012) 065} \)

At mid-rapidity, fraction of non-prompt contribution can be quantified with simultaneous fit of the invariant mass and pseudoproper decay length

#### The ALICE detector



 $J/ψ \rightarrow e^+e^-$ : central barrel |η| < 0.9

 $J/\psi \rightarrow \mu^+\mu^-$ : muon arm -4.0 < η < -2.5



#### Analysis at mid-rapidity





PLB 704 (2011) 442-455

- Minimum bias event selection based on a signal in V0
- Track selection based on quality cuts
- PID based on TPC dE/dx: signal within 3 σ from expected electron line, exclusion of pion and proton lines
- Veto on tracks compatible with photon conversion

### Analysis at mid-rapidity





- Invariant mass of oppositesign electron pairs
- Background description with
  - like-sign pairs
  - track rotation
  - event mixing
- Signal extraction by bin counting in the invariant mass region of the expected signal after background subtraction

#### Analysis at forward rapidity



- Trigger on events with an opposite-sign muon pair
- Track quality cuts to reduce hadrons escaping from the front absorber, low p<sub>T</sub> muons from decays, secondary and fake muons
- Yields extracted by fitting Crystal Ball functions to the J/ψ and ψ(2S) signals and Variable Width Gaussian to the background



#### Overview of analyzed data sets





 $\sqrt{s}$ =2.76 TeV: PLB 718 (2012) 295  $\sqrt{s}$ =5 TeV: arXiv:1606.08197  $\sqrt{s}$ =7 TeV: EPJC 74 (2014) 2974  $\sqrt{s}$ =8 TeV: EPJC 76 (2016) 184

- Rich set of analyzed data with collision energies from 2.76 TeV to 13 TeV
- Steady increase of luminosity and  $p_T$  reach with collision energy
- Hardening of spectra with energy
- Change of slope at high  $p_T$ : onset of non-prompt J/ $\psi$  contribution

10

### $p_{\scriptscriptstyle T}$ -differential and integrated cross section

#### @ 7 TeV







- Forward rapidity: agreement between experiments
- Mid-rapidity: ALICE results are complementary to other LHC measurements at low  $p_{\scriptscriptstyle T}$

#### Comparison to models: CSM





Calculations: direct J/ψ production

Measurement: inclusive J/ψ

→ model scaled up with a constant

- LO and NLO underestimate the production, steeper  $p_T$  dependence
- Taking into account leading p<sub>T</sub> NNLO contributions
   (NNLO\*) moves model closer to data, p<sub>T</sub> shape in better agreement, larger uncertainties

### Comparison to models: NRQCD







- Same NLO CS contributions as in CSM and CO contributions
- Models describe the data well
- Fixed-order perturbative description → cannot describe low p<sub>T</sub> part
- Some uncertainties cancel when building the ratio ψ(2S) to J/ψ
- Observed increase in ψ(2S) to J/ψ ratio reproduced by models

### J/ψ production vs. charged-particle multiplicity



- Charged-particle multiplicity measured at mid-rapidity
- Approx. linear increase of J/ψ production with particle multiplicity both at mid- and forward rapidity
- Can not be understood by a simple
   2→2 hard partonic scattering scenario



# J/ψ production vs. charged-particle multiplicity



- Charged-particle multiplicity measured at mid-rapidity
- Approx. linear increase of J/ψ production with particle multiplicity both at mid- and forward rapidity
- Can not be understood by a simple
   2→2 hard partonic scattering scenario
- Can be interpreted by the participation of heavy quarks in Multi-Parton Interactions
- Percolation model predicts stronger than linear increase for high multiplicities
- ALICE expects to extend this measurement to higher multiplicities



extracted from PRC 86 (2016) 034903





 Excellent agreement between LHCb and ALICE





NRQCD: Ma, Wang and Chao, PRL 106 (2011) 042002 NRQCD+CGC: Ma and Venugopalan, PRL 113 (2014) 192301

FONLL: Cacciari et al., JHEP 1210 (2012) 13

- Excellent agreement between LHCb and ALICE
- Low p<sub>T</sub>: NRQCD together with Color Glass Condensate description of the protons
- Proper handling of higher mass charmonium feed-down
- Description of B-meson feeddown from FONLL
- Sum of NRQCD prompt and FONLL non-prompt models agrees very well with data







- Excellent agreement between LHCb and ALICE
- Low  $p_T$ : NRQCD together with Color Glass Condensate description of the protons
- Proper handling of higher mass charmonium feed-down
- Description of B-meson feed-down from FONLL
- Sum of NRQCD prompt and FONLL nonprompt models agrees very well with data
- Rapidity dependence of  $p_T$ -integrated cross-section in agreement with data

#### Summary



- ALICE measures J/ $\psi$  production in pp collisions at various LHC energies down to zero  $p_{\mathsf{T}}$  both at forward- and mid-rapidity
- The mid-rapidity measurement capabilities at low  $p_{\rm T}$  are unique among the LHC experiments
- J/ψ production as a function of charged-particle multiplicity is a new observable that sheds light on the interplay between soft and hard QCD processes
- Results at √s= 13 TeV are in good agreement with LHCb and the NRQCD formalisms when taking properly into account the feed-down from higher charmonium states and B-mesons

#### Summary



- ALICE measures J/ $\psi$  production in pp collisions at various LHC energies down to zero  $p_{\mathsf{T}}$  both at forward- and mid-rapidity
- The mid-rapidity measurement capabilities at low  $p_{\rm T}$  are unique among the LHC experiments
- J/ψ production as a function of charged-particle multiplicity is a new observable that sheds light on the interplay between soft and hard QCD processes
- Results at  $\sqrt{s}$  = 13 TeV are in good agreement with LHCb and the NRQCD formalisms when taking properly into account the feed-down from higher charmonium states and B-mesons

### Thanks for your attention!



#### **BACKUP**





- Excellent agreement between LHCb and ALICE
- Low  $p_T$ : NRQCD together with Color Glass Condensate description of the protons
- Proper handling of higher mass charmonium feeddown
- Description of b-meson feeddown from FONLL

22





- Prompt J/ψ and D mesons at mid-rapidity
  - → same trend for open and hidden charm





- Inclusive J/ψ at mid- and forward rapidity and D mesons at mid-rapidity
  - → same trend for open and hidden charm





- Do mesons at mid-rapidity
- Different multiplicity estimator: energy deposited in V0 detector
  - → introducing η gap between measuring multiplicity estimator and measured quantity
  - → remove auto-correlation
- Same trend as for charged track multiplicity estimator





- D mesons at mid-rapidity
- PYTHIA 8 (new treatment of MPI) predicts linear increase with multiplicity
- EPOS with hydro expects stronger than linear increase

26





- J/ψ from B meson decay
- PYTHIA 8 (new treatment of MPI) predicts linear increase with multiplicity

27





- D and B mesons
- PYTHIA8: first hard scattering processes flatten with higher multiplicity
- stronger increase for MPI



| Origin of c and b quark content   |              | D mesons |    | B mesons            |     |
|-----------------------------------|--------------|----------|----|---------------------|-----|
| First hard process                |              | 11%      |    | 36%                 |     |
|                                   | gluon fusion |          | 2% |                     | 15% |
|                                   | c/b sea      |          | 9% |                     | 21% |
| Hard process in MPI               |              | 21%      |    | 24%                 |     |
| Gluon splitting from hard process |              | 6%       |    | included in ISR/FSR |     |
| ISR/FSR                           |              | 62%      |    | 40%                 |     |
| Remnant                           |              | < 0.2%   |    | < 0.4%              |     |

**Table 2:** Contribution of the different production processes to the total D- and B-meson production in PYTHIA 8.157 [31] for pp collisions at  $\sqrt{s} = 7$  TeV.

JHEP 09 (2015) 148

#### **Polarization**





- J/ψ polarization at forward rapidity compatible with 0
- Important test for charmonium production models

30