

Overview

- Jet quenching in a nutshell
 - Partons lose energy in the medium-
 - This lost energy makes jets broader and softer
- Towards quantitative understanding
 - Measurement details matter
 - Cold nuclear matter effects?

Jets – the cartoon

Want a probe which traveled through the medium QGP is short lived \rightarrow need a probe created in the collision We expect the medium to be dense \rightarrow absorb/modify probe

Quenched jets: what we're trying to study

- Softer constituents
- Broader radius

Figure from Nucl.Phys. A827 (2009) 356C-364C arXiv:0902.2488 [nucl-ex]

Ways to study jets

- Single particle
- Di-hadron (multi-hadron) correlations
- Fully reconstructed jets

Nuclear modification factor

- Measure spectra of probe (jets) and compare to those in p+p collisions or peripheral A+A collisions
- If high-p_T probes (jets) are suppressed, this is evidence of jet quenching

Nuclear modification factor R RHIC LHC

- Electromagnetic probes consistent with no modification medium is transparent to them
- Strong probes significant suppression medium is opaque to them

- Electromagnetic probes consistent with no modification medium is transparent to them
- Strong probes significant suppression medium is opaque to them

Quantifying \hat{q} Phys. Rev. C 90, 014909 (2014)

 $\hat{q} = Q^2 / L$ Q = Momentum transfer from parton to medium L = path length

p+Pb as a control

Di-jet asymmetry

Di-jet asymmetry

Au+Au di-jets more imbalanced than p+p for p_{Tcut}>2 GeV/c Au+Au A_J ~ p+p A_J for matched di-jets (R=0.4)

Fragmentation functions

Dihadron correlations

Christine Nattrass (UTK), Hot Quarks, September 2016

Dihadron correlations

What is a jet? A jet is what a jet finder finds.

Jets in principle

- Jet measures
 partons
- Hadronic degrees of freedom are integrated out
- Algorithms are infrared and colinear safe

OK

Christine Nattrass (UTK), Hot Quarks, September2016

BAD: 2 jets

are merged

in one

Hadronization is important even in pp collisions!

Jet finding algorithms

- Any list of objects works as input
- Use the same algorithm on theory & experiment
- Output only as good as input

M. Cacciari, G. P. Salam, G.Soyez, JHEP 0804:063,2008

Bias & Background

p+p di-jet event in STAR

Signal

- Harder
- Correlated with rxn plane
- Low p_T modifications
- Flavor modifications?

Central Au+Au collision in STAR

Background

- Softer
- Correlated with rxn plane
- Large fluctuations/hot spots
- Combinatorial background
- Degraded energy resolution

http://www.boredpanda.com/animal-camouflage/

Bias

- Modified jets probably look more like the medium
- Quark jets are narrower, have fewer tracks, fragment harder [Z Phys C 68, 179-201 (1995), Z Phys C 70, 179-196 (1996),]
- Gluon jets reconstructed with k_T algorithm have more particles than jets reconstructed with anti-k_T algorithm [Phys. Rev. D 45, 1448 (1992)]
- Gluon jets fragment into more baryons [EPJC 8, 241-254, 1998]

http://www.boredpanda.com/animal-camouflage/

What you see depends on where you look

Focus on high p_{T}

- Pros:
 - Reduces combinatorial background
- Cons:
 - Cuts signal where we expect modifications
 - Could bias towards partons which have not interacted
 - Biases sample towards quarks

Focus on smaller angles

- Pros
 - Background is smaller
 - Background fluctuations smaller
- Cons:
 - Modifications expected at higher R
 - Biases sample towards quarks

ALICE/STAR

Combinatorial "jets"

•Estimate combinatorial jet contributions and its fluctuations from data

•Require leading track $p_T > 5 \text{ GeV/c}$

- Suppresses combinatorial "jets"
- Biases fragmentation

No threshold on constituents

Limited to small R

Measured spectra:

CMS: Iterative Pile-Up Event Background Subtraction

Background is estimated - for each calorimeter ring of constant n

- subtracted before jet finding

- re-iterated after excluding the jets found in the first iteration

Fake Jets: After the background subtraction, some local
fluctuations remain!Fluctuations will deteriorate the jet resolution in central
events.Sevil Salur

28

ATLAS

- Iterative procedure
 - Calorimeter jets: Reconstruct jets with R=0.2. v₂ modulated <Bkgd> estimated by energy in calorimeters excluding jets with at least one tower with

 E_{tower} > < E_{tower} > **Track jets:** Use tracks with p_{T} >4 GeV/c

- Calorimeter jets from above with E>25 GeV and track jets with p_T>10 GeV/c used to estimate background again.
- Calorimeter tracks matching one track with p_T>7 GeV/c or containing a high energy cluster E >7 GeV are used for analysis down to E_{iet} = 20 GeV

Phys. Lett. B 719 (2013) 220-241

Event mixing

Peripheral

- Reference spectrum: peripheral collisions
- Much less combinatorial background compared to most central data
- Excellent signal/background ratio down to 3 GeV/c
- Requires normalization at low p_{T}
- All physical correlations treated like jets

Alex Schmah, Hard Probes 2015

Cold Nuclear Matter effects

- No indication of modified jet structure in cold nuclear matter (d+Au and p+Pb collisions) [Phys.Rev.C73:054903,2006, Phys.Rev.Lett.96:222301,2006]
- Minimum bias R_{pPb}, R_{dAu} for charged particles, jets consistent with 1 [Phys.Rev.Lett.98:172302,2007,Phys.Rev.C81:064904,2010,Phys. Rev. Lett. 110 (2013) 082302, arXiv:1605.06436]
- Indications of modification at forward rapidities from dihadron correlations [Phys. Rev. Lett. 107, 172301 (2011)]
- Centrality dependence observed [PLB 748 (2015) 392-413, Phys. Rev. Lett. 116, 122301 (2016)]

Conclusions

- What to remember
 - A jet is not a parton
 - All jet measurements are biased
 - Background subtraction/suppression methods are important
 - Beware Cold Nuclear Matter effects!
- Challenges to the field
 - Cross check between experiments using the same method
 - Experimentalists: explain method/measurement to theorists!
 - Theorists: don't ignore the method!

Many thanks to Rosi Reed, Sevil Salur, and Megan Connors for many productive discussions