The Initial Stages of Colliding Nuclei and Hadrons

Prithwish Tribedy

Hot Quarks 2016, workshop for young scientist on the physics of ultra relativistic A-A collisions

September 12-17, 2016, on South Padre Island, TX, USA

You have seen this before but let me add two more...

??????

4

How can we possibly know about initial states ?

talk by Soumya

Long range correlations

Long range correlations

Long range correlations

Long range correlations

Long range correlations

Signature of medium formation

Striking similarity

Is this hydro or CGC ? Is this signature of collectivity ? Is this signature of QGP ?

Is this hydro or CGC ? Is this signature of collectivity ? Is this signature of QGP ?

Lets focus on the long range correlations

The origin of long range correlations

Causality argument tells it must have origin as very early stages

The origin of long range correlations

Causality argument tells it must have origin as very early stages

Long range correlations

or initial state position space correlations?

Is this due to initial state momentum space correlation

For A+A collisions we know the answer

Nearly boost invariant initial state position space correlations + collective flow → ridge like structure in A+A

boost invariant initial state

Still initial state drives the phenomenon

boost invariant hydro evolution

Initial state position space correlations

Nearly boost invariant initial state position space correlations + collective flow \rightarrow ridge like structure in A+A

Same story for small systems?

Then we need to estimate the right initial conditions?

Bozek, Broniowski 1304.3044

K. Werner *et al* 1307.4379

Another piece of puzzle p+Pb

However it persist up to very large $p_{\perp} = 10$ GeV some semi-hard (short distance) QCD dynamics playing a role ?

Flow like patten but how about jet-quenching ?

- No convincing evidence for mini-jet quenching seen in data
- The away side is almost un-modified, even used for subtraction
- approach towards thermalization \rightarrow mini-jets must be fully quenched

One more thing we shouldn't forget

arXiv: 1011.5531

Ridge appears only in high multiplicity events in small systems

One more thing we shouldn't forget

Ridge appears only in high multiplicity events in small systems

Origin of high multiplicity events \leftrightarrow Systematics of $\Delta\eta$ - $\Delta\phi$ correlations

Similar underlying dynamics must drive these phenomenon

Initial state correlations

Initial state correlations

Initial stages of colliding hadrons/nuclei

At high energies in Regge Gribov limit $\sqrt{s} \to \infty, x \to 0$: gluon saturation

 \bullet

Non-linear processes stop growth of gluons, emergence of a scale $Q_S(x) > \Lambda_{QCD}$

Initial stages of colliding hadrons/nuclei

- \bullet
- \bullet

At high energies in **Regge Gribov limit** $\sqrt{s} \to \infty, x \to 0$: gluon saturation

Non-linear processes stop growth of gluons, emergence of a scale $Q_S(x) > \Lambda_{QCD}$ Gluon dominated wave function, high occupancy $\sim \frac{1}{2}$ peaked at $Q_S(x)$

Proton fluctuation : Saturation momentum

The wave function of a hadron $|H\rangle = |qqq\rangle + |qqqg\rangle + \cdots + |qqqgg\rangle + \cdots + |qqqgg\rangle$

p+p collisions are asymmetric

Distribution of Partons are driven by stochastic process

Proton fluctuation : Intrinsic shape

Nucleus multiple proton target

Quark structure Essential for description of Incoherent DIS data

Schenke, Mantysaari 1603.04349

p+p collisions are eccentric

Initial state momentum correlation

Intrinsic momentum space correlations collimated emission of particles

Δφ

Correlations already present among partons in projectile wave function survive after scattering off the color fields of target

Initial state momentum correlation

n-particle correlations \rightarrow negative binomial distributions (NBD) NBD + Qs-fluctuations + collision geometry \rightarrow multiplicity distributions

Classical Yang-Mills : Numerical solutions

IP-Glasma model in a nutshell

Colliding nuclei

- → classical color charge $\rho(x_{\perp})$
- → classical color field solving

$$[D_{\mu}, F_{\mu\nu}] = J_{\nu}$$

Talk by Steven

Classical Yang-Mills : Numerical solutions

IP-Glasma model in a nutshell

Colliding nuclei

- \rightarrow classical color charge $\rho(x_{\perp})$
- → classical color field solving
- Field after collisions \rightarrow combination of colliding fields

Schenke, PT, Venugopalan 1202.6646

$$[D_{\mu}, F_{\mu\nu}] = J_{\nu}$$

$$T_{\mu,\nu}(\tau, x_{\perp}, \eta)$$

$$\frac{dN}{d\mathbf{p}_{T1}dy_1\dots d\mathbf{p}_{Tn}dy_n}$$

Talk by Steven

Classical Yang-Mills : Numerical solutions

IP-Glasma model in a nutshell

Colliding nuclei

- \rightarrow classical color charge $\rho(x_{\perp})$
- → classical color field solving
- Field after collisions \rightarrow combination of colliding fields

Schenke, PT, Venugopalan 1202.6646

$$[D_{\mu}, F_{\mu\nu}] = J_{\nu}$$

$$T_{\mu,\nu}(\tau, x_{\perp}, \eta)$$

$$\frac{dN}{d\mathbf{p}_{T1}dy_1\dots d\mathbf{p}_{Tn}dy_n}$$

Talk by Steven

Purely momentum space correlations of gluons produce ridge after fragmentation

Mass ordering can come from initial state correlations + fragmentations

Initial state correlations

Common Initial conditions

MC-Glauber

Gale, Jeon, Schenke, Int.J.Mod.Phys. A28 (2013) 1340011 fig:

Energy densities from these models are input to hydrodynamic simulations

A few other models of initial conditions

neXus, EPOS : Parton-Based Gribov Regge Theory

Drescher, Hladik, Ostapchenko, Pierog, Werner, hep-ph/0007198. Werner, Liu, and Pierog, hep-ph/0506232 Pierog, Karpenko, Katzy, Yatsenko, Werner, 1306.0121

DIPSY : saturation + BFKL cascade

Kharzeev, Levin, Nardi, hep-ph/0111315, Drescher, Nara 0707.0249, Albacete, Dumitru 1011.5161

CGC factorization : KLN model, f-KLN, MC-KLN, MC-rcBK

Data that nailed it down

Retinskaya, Luzum, Ollitrault 1311.5339

RHIC and LHC vn data highly constrains initial state models

These data constrained many models of initial conditions like MC-KLN & MC-Glauber (correlation between shape and multiplicity)

Data that nailed it down

Improved Glauber Models

TRENTO

Quark-Glauber

Moreland, Bernhard, Bass 1412.4708

Eremin, Voloshin nucl-th/0302071, PHENIX 1509.06727

Shadowed Glauber

Modification of Glauber : additional coherence to be introduced

Shadowed Glauber

Chatterjee et al 1510.01311, 1601.03971

Normal Glauber

EKRT : pQCD (shadowing) + saturation

Implementation of saturation when $2 \rightarrow 2 \sim 2 \rightarrow 3$

Time evolution \rightarrow Bjorken like expansion

Very successful phenomenology at RHIC and LHC

NLO pQCD cross section of mini-jets with nPDF

Niemi, Eskola, Paatelainen 1505.02677

3D initial conditions

3D-Glauber (LeXUS + Glauber)

Schenke, Monnai 1509.04103

3D-Glasma (JIMWLK + IP-Glasma)

Schenke, Schlichting 1605.07158

- Breaking of **boost-invariance** \rightarrow due to longitudinal fluctuations → twist, torque, event-plane de-correlation
 - 3D initial state \rightarrow More important at lower energies

Holographic initial conditions

fig: W. Van der Schee QM'15

Chesler, Kilbertus, Van der Schee 1507.02548, Van der Schee, Schenke 1507.08195,

Initial state correlations

Approach to Isotropization /Thermalization

Pre-equilibrium dynamics - Classical Yang-Mills can not lead to isotropization or thermalization

Effective Kinetic Theory \rightarrow ab initio approach

$$\left(\partial_t + \hat{\boldsymbol{p}} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}}\right) f_s(\boldsymbol{x}, \boldsymbol{p}, t) = -C_s^{2 \leftrightarrow 2}[f] - C$$

Quasiparticle picture \rightarrow Isotropization in weak coupling

talk by Aleksas

 $\mathcal{I}_{s}^{``1\leftrightarrow 2"}[f]$

Arnold, Moore, Yaffe hep-ph/0209353 Kurkela, Zhu 1506.06647

Qualitative Picture : Small systems

low multiplicity events

mini-jets escape

high multiplicity events

mini-jets quenched

Schlichting's Phase Diagram of Correlation

Event-multiplicity

Event-multiplicity

mini-jets quenched

e final state take over ?

Kurkela, Zhu 1506.06647

 $Q_s \tau_{eq} \simeq 10 (\eta/s)_{T_{eq}}^{4/3} (g^2 N_c)^{1/3} \simeq 10$ Number density $dN/dy \simeq \xi Q_s^2 \pi R^2$

$$\frac{\tau_{eq}}{R} \simeq \sqrt{\frac{100}{dN/dy}} \qquad \text{dN/dy~100}$$

Equilibration time ~ system size

Summary

- Understanding Initial state from a first principle approach is essential
- Data in small systems provide unique opportunities and challenges
- Understanding of isotropization will improve complete modeling of HICs

Backup

Mass ordering of average transverse momentum

Effect of running coupling —> increase in $\langle p_T \rangle$

A list of models of initial conditions

Kharzeev, Levin, Nardi, hep-ph/0111315, Drescher, Nara 0707.0249 KLN model, f-KLN, MC-KLN: k_{\perp} -factorization (dilute-dense approximation) with UGDs dependent on N_{part} $Q_S^2(x_{\perp}) \propto N_{part}(x_{\perp})$ Albacete, Dumitru 1011.5161

MC-rcBK: Monte-Carlo implementation of k_{\perp} -factorization with rc-BK UGDs constrained by HERA-data.

Schenke, PT, Venugopalan 1202.6646

IP-Glasma : IP-Sat initial condition (constrained by HERA data) and solutions of Classical Yang-Mill equations.