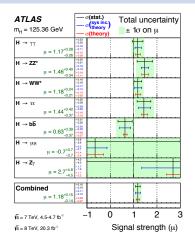
Search for the rare decay ${\rm H} \rightarrow \phi \, \gamma \, \, {\rm with} \, \, {\rm ATLAS} \, \, {\rm data} \, \, {\rm at} \, \, \sqrt{s} = 13 \, \, {\rm TeV}$

J. Broughton

University of Birmingham

22nd March 2016



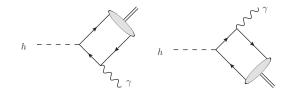
Introduction

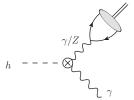
Motivation:

- Since the discovery of the Higgs boson, attention has now shifted to understanding the couplings of the particle to determine whether it is the SM Higgs boson
- Some searches aim to probe the Higgs Yukawa couplings to lighter quarks and explore the feasibility of decay channels for future higher luminosity investigations
- A search was performed by ATLAS last year for the rare decays of the Higgs and Z bosons to {J/ψ, Υ(nS)}, γ
 (PRL 114, 121801 (2015) arXiv:1501.03276)

Eur. Phys. J. C (2016) 76:6 $\mu = \sigma / \sigma_{SM}$

- ▶ Now searching for $H(Z) \rightarrow \phi \gamma$ to provide a probe of the $H \rightarrow s\bar{s}$ Yukawa coupling
 - entirely unconstrained by existing measurements


$H \rightarrow V \gamma$ Production Mechanisms


Direct Contribution:

- Higgs boson decays to quark-antiquark pair
- One quark radiates a photon before forming a quarkonium

Indirect Contribution:

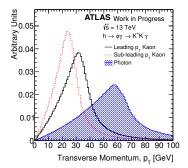
- Higgs boson decays through a top-quark or vector-boson loop to γ and a γ* (virtual photon)
- Virtual photon then decays in to quarkonium
- Decay amplitudes can be inferred from $H \rightarrow \gamma \gamma$ and the coupling of the quarkonium to a virtual photon

Predictions for SM branching fractions:

► Expected H and Z SM branching fraction of O(10⁻⁶) and O(10⁻⁸):

•
$$\mathcal{B}(H
ightarrow \phi \gamma) = (2.3 \pm 0.1) imes 10^{-6}$$

- JHEP 1508 (2015) 012 (arXiv:1505.03870)
- $\mathcal{B}(Z \rightarrow \phi \gamma) = (1.2 \pm 0.1) \times 10^{-8}$


- PRD 92, 014007 (2015) (arXiv:1411.5924)

- At this small branching fraction we expect only a small number of events (~350) over the lifetime of ATLAS (3000 fb⁻¹)
- The observation of a deviation from the SM branching fraction could indicate potential BSM physics

Analysis Strategy

Aim

- ▶ Perform first search for $H \rightarrow \phi \gamma$ decays with the ATLAS 2015 pp data at $\sqrt{s} = 13$ TeV
- Develop a simple cut-based blind analysis
- Provide the first direct sensitivity to strange quark Yukawa coupling
- Also performing a similar search for $Z \to \phi \gamma$ decays

Plan

- ▶ Reconstruct only $\phi \to K^+K^-$ decays, $\mathcal{B}(\phi \to K^+K^-) = 49\%$ (the rest of ϕ width is into $K_s^0 K_L^0$ and inclusive hadronic decays)
- Exploit the distinctive topology of a pair of high p_T isolated tracks, with a very small opening angle (ΔR < 0.05), recoiling against a hard isolated photon</p>
- Implement and commission dedicated trigger to collect these events No appropriate ATLAS triggers in Run 1

HLT $\phi \rightarrow K^+K^-$ Selection:

- The topology of a boosted $\phi \rightarrow K^+ K^-$ is somewhat similar to a low multiplicity hadronic τ decay
- ▶ Require exactly two tracks with invariant mass (under pion hypothesis) of $200 < m_{\pi\pi} < 450$ MeV
- ► The leading track (in p_T) must have p_T > 15 GeV

Data Sample

> Data sample corresponding to **2.73** fb⁻¹ was collected during the latter half of the 2015 $\sqrt{s} = 13$ TeV run

MC Samples

- ▶ Generated ggH, VBF, WH, ZH MC samples (~100k events each)
- Also a Z MC simulation sample (~60k events)

Analysis Kinematic Selection:

- Photons must satisfy $p_T^{\gamma} > 35 \text{ GeV}$
- Leading track p_T > 20 GeV and sub-leading track p_T > 15 GeV
- Linearly increasing di-track transverse momentum requirement, from 40 GeV at m_{KKγ} ≤ 91 GeV to 45 GeV at m_{KKγ} ≥ 125 GeV
- Require Δφ(K⁺K[−], γ) > 0.5 (removes ~ collinear φγ pairs)
- Require detector η limitations

Estimation of the acceptances from Higgs MC simulation samples using the analysis kinematic selection:

Higgs Production	Acceptance
ggH	45%
VBF	41%
WH	36%
ZH	37%

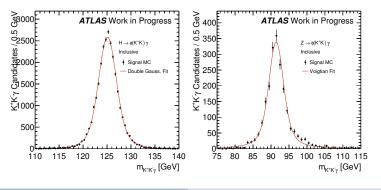
Z Production	20%
--------------	-----

Signal Region (ZTR2)

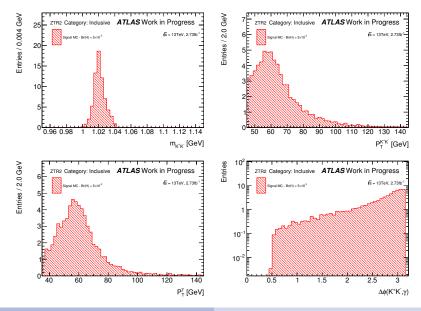
In addition to kinematic selection requirements:

- Require standard ATLAS isolation requirements on photon and tracks
- ▶ Require consistency with ϕ mass: $|m_{KK} m_{\phi}| < 20$ MeV

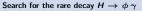
4.5 4 3.5 Entries / 0.25 GeV Entries / 2.0 GeV ZTR2 Category: Inclusive ATLAS Work in Progress ZTR2 Category: Inclusive ATLAS Work in Progress s = 13TeV, 2.73fb s = 13TeV, 2.73ft ional MC - Br(H) = 5×10 ional MC - Br(H) = 5×10⁴ 2.5 1.5 1 0.5 105 110 115 120 125 130 135 60 140 145 150 40 80 100 120 $m_{K^*K^*\nu}$ [GeV] P^{K^{*}Kγ} [GeV]


Three-body distributions in H Signal MC:

Selection essentially defined by trigger and detector acceptance, total A \times ϵ around 18% for Higgs signal and 8% for the Z signal

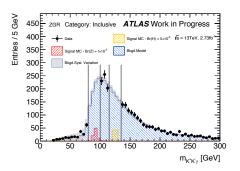

Three-body Mass Resolution

Three-body Mass Resolution:


- Estimated by fitting a double Gaussian to the simulated signal three body mass distributions
- Events are split into four individual categories based on track η and photon conversion status (i.e. converted or unconverted) mass resolution ranges between 1.5 GeV (Barrel Unconverted) and 2.4 GeV (Endcap Converted) for Higgs signal

Kinematic Distributions in H Signal MC

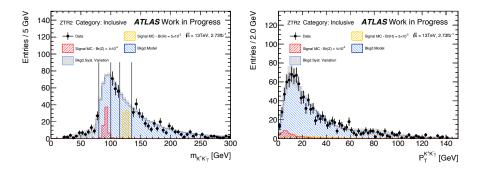
James Broughton



10 / 16

Background Modelling

Background Model:


- Expected to be dominated by multi-jet and γ+jet processes, where the φ meson is within the jet
- Events from a loose selection in data are used to build templates for the kinematic distributions of the φ candidate and photon
- Correlations between distributions are modelled and retained
- Distributions are sampled to build "pseudo-candidates" for the three-body 4-vector

Large samples of "pseudo-candidates" are used to build background model templates in the important kinematic distributions (e.g. m_{KKγ})

Background model normalised to data in a loose region where all requirements apart from isolation and ϕp_T are applied

Region of 80 $< m_{KK\gamma} < 100$ GeV and $115 < m_{KK\gamma} < 135$ GeV currently blinded

Signal normalisation: $\mathcal{B}(Z \to \phi \gamma) = 1 \times 10^{-5}$ and $\mathcal{B}(H \to \phi \gamma) = 5 \times 10^{-3}$

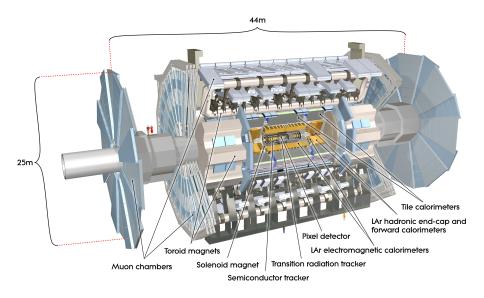
Based on predicted background normalisation, the following expected branching fraction limits at 95% CL are estimated:

•
$$\mathcal{B}(H \to \phi \gamma) = \mathcal{O}(10^{-3})$$

$$\blacktriangleright \ \mathcal{B}(Z \to \phi \gamma) = \mathcal{O}(10^{-6})$$

To be compared to expected SM values of:

- $\mathcal{B}(H o \phi \, \gamma) = (2.3 \pm 0.1) imes 10^{-6}$ JHEP 1508 (2015) 012 (arXiv:1505.03870)
- ${\cal B}(Z o \phi \, \gamma) = (1.2 \pm 0.1) imes 10^{-8}$ PRD 92, 014007 (2015) (arXiv:1411.5924)


Summary

Conclusion

- ► A search for the rare decays $H \rightarrow \phi \gamma$ has been developed using the 2015 ATLAS *pp* dataset at $\sqrt{s} = 13$ TeV (2.73*fb*⁻¹)
- Background shape calculated using a data driven method and verified using signal side-bands
- ▶ Analysis currently blinded in regions of $80 < m_{KK\gamma} < 100$ GeV and $115 < m_{KK\gamma} < 135$ GeV
- Expected branching fraction limits of around $O(10^{-3})$ (Higgs) and $O(10^{-6})$ (Z)

Backup

ATLAS Detector

