Measurement of the W and Z Boson Production

 Cross-sections at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS DetectorRhys Owen ${ }^{1,2}$
University of Birmingham ${ }^{1}$, Rutherford Appleton Laboratory ${ }^{2}$
$22^{\text {nd }}$ March 2016

Science \& Technology Facilities Council
Rutherford Appleton Laboratory

SM Introduction

- Measuring the W and Z boson cross-sections at a new centre of mass energy provides a test of our understanding of both QCD and EW processes.
- Theoretical predictions are available at NNLO for QCD and NLO for the EW processes.
- The cross-section are dependent on the parton distributions of the colliding protons so can be used to provide a constraint on these PDFs

Analysis Introduction

- This analysis performed measurements of the leptonic cross-sections using $85 \mathrm{pb}^{-1}$ of data from early 2015
- Providing the first results for these measurements at the centre-of-mass energy of 13 TeV
- The full results are found in ATLAS-CONF-2015-039 [1]

ATLAS Introduction

- The ATLAS experiment is a general purpose detector based at the Large Hadron Collider.
- The LHC recently resumed operations for Run 2 with an unprecedented centre-of-mass energy of 13 TeV .

Theoretical Predictions

PDF	$\sigma_{W+}^{\text {tot }}[\mathrm{pb}]$	$\sigma_{W-}^{\text {tot }}[\mathrm{pb}]$	$\sigma_{W \pm}^{\text {tot }}[\mathrm{pb}]$	$\sigma_{Z}^{\text {tot }}[\mathrm{pb}]$
CT10NNLO	11770_{-310}^{+270}	8640_{-240}^{+210}	20400_{-500}^{+500}	1930_{-50}^{+40}
NNPDF3.0	11360 ± 260	8410 ± 200	19800 ± 500	1860 ± 40
MMHT14NNLO	11610_{-170}^{+200}	8620_{-130}^{+140}	20230_{-290}^{+330}	1909_{-27}^{+31}
ABM12LHC	11760 ± 150	8580 ± 100	20340 ± 250	1914 ± 23

ATLAS-CONF-2015-039 [1]

- Theoretical predictions of the W and Z cross-sections are computed using different pdf sets and including full NNLO QCD calculations and up to NLO electro weak corrections.
- These are calculated using Fewz3.1 [2, 3, 4, 5]
- The following PDFs are used CT10nnlo, NNPDF3.0 [6], MMHT14NnLO68CL [7], and ABM12LHC [8].
- Also shown here are the PDF variation uncertainties which are the dominant uncertainties in the calculation.

Cross-section Methodology

$$
\begin{equation*}
\sigma_{W, Z}^{\text {tot }} \times B R(W, Z \rightarrow I \nu, I I)=\frac{N-B}{A \cdot C \cdot E \cdot \mathcal{L}} \tag{1}
\end{equation*}
$$

- A counting experiment is performed using the above equation:
- where N is the number of candidate events
- B is the number of background events
- A, C and E are acceptance factors:
\star E: accounts for the difference between MC and data efficiencies
\star C: account for the difference between experimental and fiducial volume
\star A: accounts for the difference between the fiducial volume and the total cross-section phase space
- \mathcal{L} is the luminosity

Event Selection

- Leptons are selected for this analysis using the following criteria
- Electrons:
- $p_{\mathrm{T}}>25 \mathrm{GeV}$
- $|\eta|<2.47$ excluding regions with bad acceptance
- Medium likelihood based identification requirement
- Track and calorimeter based isolation.
- Muons:
- $p_{\mathrm{T}}>25 \mathrm{GeV}$
- $|\eta|<2.4$
- Cut based identification requirements.
- Track and calorimeter based isolation.
- After the lepton selection the specific selections for the W and Z
- For W :
- Exactly 1 selected lepton
- $E_{\mathrm{T}}^{\text {miss }}>25 \mathrm{GeV}$
- $m_{\mathrm{T}}>50 \mathrm{GeV}$
- using the transverse mass of the lepton and missing energy $\left(m_{T}\right)$
- For Z :
- Exactly 2 selected leptons
* Same flavour
* Opposite charge
- $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$

Background Determination

- In order to extract the cross-section it is essential to estimate the number of background events which fall into the signal selection.
- The number of background events found in the signal region is determined in a number of different ways.
- The background contributions from electroweak processes are taken from Monte Carlo simulation.
- For the W cross-section in particular a large proportion of the background comes from multijet events which are not well modelled in Monte Carlo.
- Data driven methods were used to derive the number of multijet background events.

Details of the W Multijet Background Fit

ATLAS-CONF-2015-039 [1]

- One such method was a template fit to the m_{T} distribution.
- This method was used for both the $W \rightarrow e \nu$ and $W \rightarrow \mu \nu$ channels.
- In order to determine the number of multijet background events a multijet control region is defined with an inverted isolation requirement.
- From this, signal and other background components are removed for create a multijet template.

Details of the W Multijet Background Fit

- The resulting multijet template is used in a maximum likelihood fit over the full transverse mass distribution.
- Here the signal requirement on the $m_{\text {T }}$ has been removed.
- The transverse mass was chosen as it has the greatest discrimination between signal and background especially at low values of m_{T}

Example Kinematic Distributions

ATLAS-CONF-2015-039 [1]

- These plots show the good agreement between the predictions and data for both the W and Z bosons.

Cross-section Results

ATLAS-CONF-2015-039 [1]

- The large uncertainty is largely caused by the luminosity uncertainty in this early data.

Cross-section Results

ATLAS-CONF-2015-039 [1]

- The large uncertainty is largely caused by the luminosity uncertainty in this early data.

Ratio Results

- Taking ratios of the cross-sections allows for many of the experimental uncertainties to be cancelled out, therefore it is a useful tool for constraining the pdf's.
- Here the ratios are taken directly from the fiducial cross-sections.

Lepton Universality Results

ATLAS-CONF-2015-039 [1]

- A further ratio that can be taken is that of the cross-section to lepton flavour.
- This shows the compatibility of the results for both the electron and muon channels.
- This can then be compared with the PDG world average and the standard model expectation of $(1,1)$

Summary

- Results of the W and Z boson cross-section measurements at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector are presented.
- These measurements are in agreement with the standard model but start to provide input on the nature of the particle density functions at this centre-of-mass energy.

Backup

[1] Measurement of W and Z Boson Production Cross Sections in pp Collisions at root $s=13 \mathrm{TeV}$ in the ATLAS Detector. Tech. rep. ATLAS-CONF-2015-039. Geneva: CERN, Aug. 2015. URL: https://cds.cern.ch/record/2045487.
[2] Kirill Melnikov and Frank Petriello. "Electroweak gauge boson production at hadron colliders through $\mathcal{O}\left(\alpha_{s}^{2}\right)$ ". In: Phys. Rev. D 74 (2006), p. 114017. DOI: 10.1103/PhysRevD.74.114017. arXiv: hep-ph/0609070 [hep-ph].
[3] Ryan Gavin et al. "FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order". In: Comput. Phys. Commun. 182 (2011), p. 2388. DOI: $10.1016 / \mathrm{j} . \mathrm{cpc} .2011 .06 .008$. arXiv: 1011.3540 [hep-ph].
[4] Ryan Gavin et al. "W Physics at the LHC with FEWZ 2.1". In: Comput. Phys. Commun. 184 (2013), p. 208. DOI: 10.1016/j.cpc.2012.09.005. arXiv: 1201.5896 [hep-ph].
[5] Ye Li and Frank Petriello. "Combining QCD and electroweak corrections to dilepton production in FEWZ". In: Phys. Rev. D 86 (2012), p. 094034. DOI: 10.1103/PhysRevD.86.094034. arXiv: 1208.5967 [hep-ph].
[6] Richard D. Ball et al. "Parton distributions for the LHC Run II". In: JHEP 04 (2015), p. 040. DOI: 10.1007/JHEP04 (2015) 040. arXiv: 1410.8849 [hep-ph].
[7] L. A. Harland-Lang et al. "Parton distributions in the LHC era: MMHT 2014 PDFs". In: Eur. Phys. J. C75 (2015), p. 204. Doi: 10.1140/epjc/s10052-015-3397-6. arXiv: 1412.3989 [hep-ph].
[8] S. Alekhin, J. Bluemlein and S. Moch. "The ABM parton distributions tuned to LHC data". In: Phys. Rev. D89 (2014), p. 054028. Doi: 10.1103/PhysRevD.89.054028. arXiv: 1310.3059 [hep-ph].

