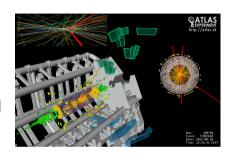
Searching for Higgs bosons in $t\bar{t}H$, $H \rightarrow b\bar{b}$ with ATLAS in LHC Run-2

a brief introduction to the $t\bar{t}H,\ H\to b\bar{b}$ analysis, its infrastructure and discovery prospects

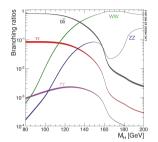
Will Breaden Madden

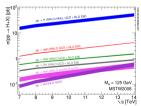
IOP 2016

2016-03-22

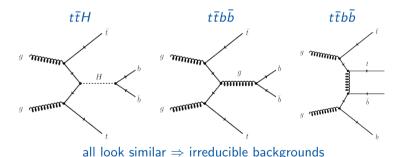

Higgs search in $t\bar{t}H$ process with ATLAS

- interesting process in which Higgs bosons have not been observed
- very difficult analysis, but done because extremely useful for testing SM description of reality
- this talk (first of three):
 - ullet a very brief introduction to the $tar t H,\ H o bar b$ analysis
 - some of the tools we have developed to do the analysis
 - me: / + jets channel
- following: dilepton channel, boosted analysis


Why search for the $t\bar{t}H$ process?

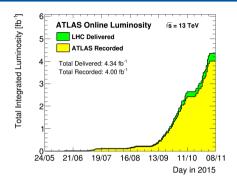

- Given the existence of a Higgs boson,
 - is it a Standard Model Higgs boson?
 - what is its character?
- The t is the most massive of all observed elementary particles $\rightarrow Y_t \sim 1$.
- The $t\bar{t}H$ process is a way to measure directly the t-H Yukawa coupling Y_t .
- So, the $t\bar{t}H$ process is interesting and useful because its discovery and measurement would be powerful evidence for the SM while deviations would indicate BSM physics.

Higgs boson processes in $t\bar{t}H$, $H \rightarrow bb$ search


- for $m_H \simeq 125$ GeV, $H \to b \bar b$ dominant decay mode (not observed)
- direct search from g fusion precluded by overwhelming multijet background
- however: search in association with vector boson (VH) or t-quark pair $(t\bar{t})$ significantly improves signal-to-background ratio
- so: Our search for is for Higgs bosons in the $t\bar{t}H$ production mode and it's designed to be sensitive primarily to the $H\to b\bar{b}$ decay.
- For $t\bar{t}H$, the cross section is low and the process is quite supressed, but the branching fraction to two b quarks is very high. So, relatively, we'd get a lot of Higgs bosons from the $t\bar{t}H$, $H\to b\bar{b}$ process.

signal and background processes in $t\bar{t}H$ search

- main background source: t pairs produced in association with additional jets
- dominant source: $t\bar{t} + b\bar{b}$ production resulting in same final-state as signal!

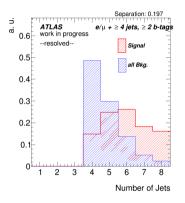


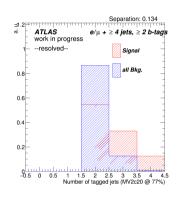
• can't use *simple* observations to discriminate between processes

challenges in $t\bar{t}H$ search

- suppressed with respect to other Higgs modes
- $H \rightarrow b\bar{b}$ has the largest branching ratio (0.577 for m_H 125 GeV)
- irreducible background from $t\bar{t}b\bar{b}$
- other backgrounds: $t\bar{t}$ production in association with light quarks (u, d, s) or gluon jets (called $t\bar{t}$ + light), and $t\bar{t}$ + $c\bar{c}$

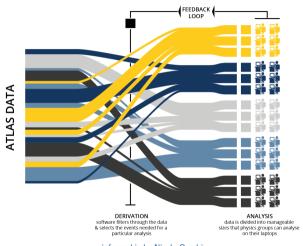
\sqrt{s} (TeV)	7	8	13	14
$t \bar{t} H \ (m_H = 125 \ \mathrm{GeV}) \ (pb)$	0.086	0.130	0.5085	0.611
$tar{t}$ (pb)	177	253	832	950
$S/\sqrt{\mathrm{B}}$	0.00646	0.0082	0.0176	0.0198


How can we address this large, irreducible background?

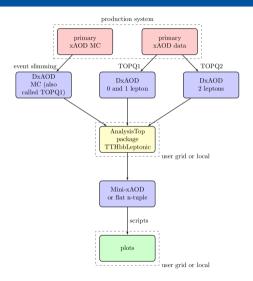

analysis strategy:

- irreducible background
 - ⇒ no clear discriminating variables
 - ⇒ multivariate approach to get best possible S/B separation (NN, BDT, DNN in due course)
- define analysis 'regions' using jet multiplicities
- use signal-depleted regions to constrain backgrounds and uncertainties
- make a combined nuisance parameter fit to all regions

motivation for jet multiplicity analysis regions



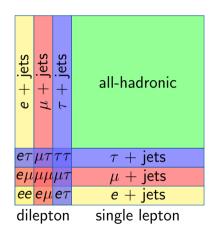
- goal: define signal-enriched and signal-depleted regions
- good separation provided by jet multiplicity and *b*-tagged jets

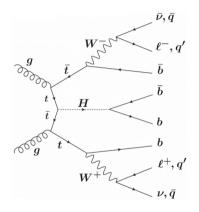


ATLAS analysis data flow

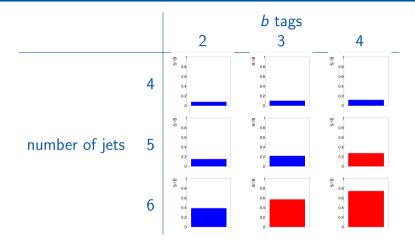
University Experimental of Glasgow Particle Physics

$t\bar{t}H$ analysis data flow


enter: TTHbbLeptonic!


- TTHbbLeptonic: analysis package for the $t\bar{t}H,\ H\to b\bar{b}$ analysis
- formed from the union of the analysis efforts of the l+ jets, dilepton, boosted $t\bar{t}H,\ H\to 4b,\ H^+\to tb$ and, recently, all-hadronic analyses
- good, clear code with validation procedures, branch-based development, good, detailed, per-version documentation, welcoming to new analyses, release early and often

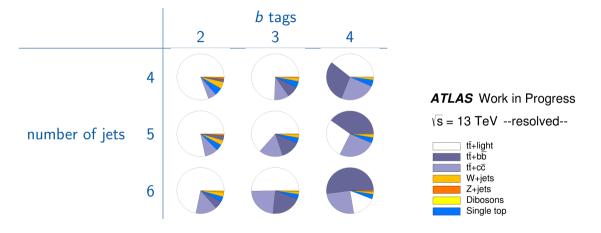
$t\bar{t}H\left(b\bar{b}\right)$ channels



$\left(tar{t}H\left(bar{b} ight) I+ ight)$ jets analysis

- data recording
- data derivations (remove information unnecessary to specific analyses)
- event selection and calculation of variables analysis framework
 - single lepton triggers
 - single lepton channel cuts:
 - exactly 1 isolated high- p_T (i.e. 25 GeV) lepton (e or μ),
 - at least 4 jets,
 - at least 2 of which are b-tagged
- event categorisation by jet characteristics
 - constrain systematic uncertainties with low S/B regions
 - study data-MC agreement in inclusive regions

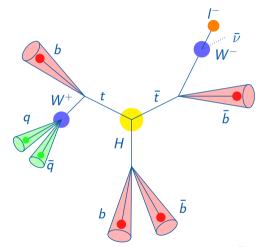
$\mathsf{S}/\sqrt{\mathrm{B}}$ for the various analysis regions



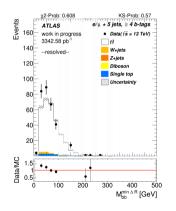
ATLAS Work in Progress $\sqrt{s} = 13 \text{ TeV}$ --resolved--

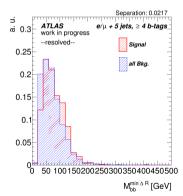
*colours defined by collective consideration of S/B and S/ $\sqrt{\rm B}$

background compositions of various analysis regions



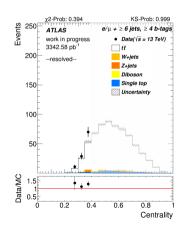
major contributions from processes involving pairs of t quarks

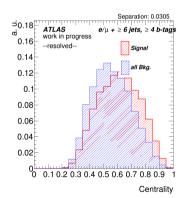

some human-defined MVA discriminating variables


- obvious discriminant: masses of particles decaying to two b quarks (the difference between the Higgs and gluon masses)
- full kinematic reconstruction would work, but it would be computationally difficult with 6 jets...
- (see next talks)

MVA discriminating variable: $M_{b\bar{b}}^{min\Delta R}$

 $M_{b\bar{b}}^{\min\Delta R}$: the mass of the b quark pair with the minimum ΔR between them





MVA discriminating variable: centrality

Centrality: the scalar sum of the p_T divided by the sum of the E for all jets and leptons

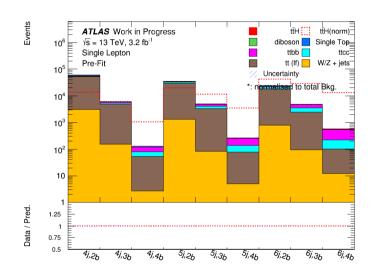
event yields for two signal-enriched regions

6 jets, 3 *b*-tags

Process	Events	Stat. unc.
$t\bar{t}$	5145	20
W+jets	94.1	9.9
Z+jets	23.0	2.5
Diboson	20.9	1.2
Single top	186.3	2.3
Total bkg	5469.4	6.0
ttH exp.	42.23	0.32
S/Bkg	0.0077	
S/sqrt(Bkg)	0.57	

Run-1: 40 $t\bar{t}H$ expected events

6 jets, 4 *b*-tags


- 1				
Process	Events	Stat. unc.		
tτ̄	622.6	7.4		
W+jets	10.7	2.7		
Z+jets	3.7	2.2		
Diboson	2.17	0.37		
Single top	22.98	0.83		
Total bkg	662.2	3.7		
$t\bar{t}H$ exp.	19.13	0.21		
S/Bkg	0.029			
S/sqrt(Bkg)	0.74			

Run-1: 16 $t\bar{t}H$ expected events

ATLAS Work in Progress

event yields for all regions

 This plot shows the number of events in the standard resolved analysis in each resolved category for signal and background.

What's next?

- $t\bar{t} + V$ estimates, QCD estimates
- MVA training to estimate expected limit
- restart imminent (beam: \sim 2016-03-28; stable beams and physics: \sim 2016-04-25)
- first Run-2 combined ttH result
 aim: ICHEP 2016 (2016-08-03-2016-08-10)
- improve on sensitivity of Run-1 results

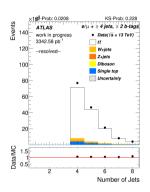
When might we expect to discover a $t\bar{t}H$ SM Higgs boson?

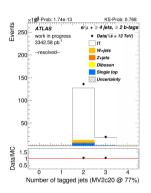
- expected significance of $\sim 3 \sigma$ for the full $t\bar{t}H$ combination with $\sim 20 \text{ fb}^{-1}$ data
- expected significance of \sim 5 σ for the full $t\bar{t}H$ combination with \sim 100 fb⁻¹ data
- have 4 fb⁻¹ from 2015 when LHC Run-2 started
 we hope to have much more this year!

What's next?

- There are many parts to the combined $t\bar{t}H$, $H\to b\bar{b}$ analysis.
- I work on the single lepton part.
 - Will Breaden Madden (single lepton analysis)
- In the next two talks, you'll have the pleasure of hearing about two other parts of the analysis from my colleagues:
 - Ben Sowden (dilepton analysis)
 - Sam Crawley (boosted analysis)

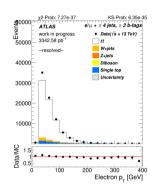
questions?

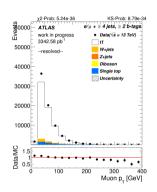

thanks! questions?

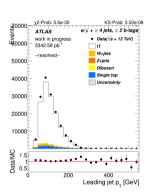



BACKUP

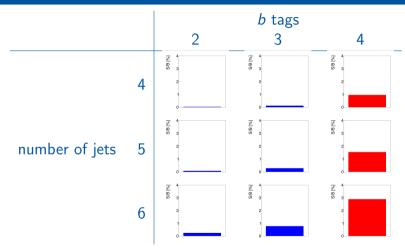
jet multiplicities and MET






*working on lepton fakes estimate currently \Rightarrow less MC-data discrepancy at low p_T

leptons and jet p_T



*working on lepton fakes estimate currently \Rightarrow less MC-data discrepancy at low p_T

derivation framework and data reductions

- The Run-2 Derivation Framework defines the conversion of xAOD data to derived DxAODs, which groups and users can process. The Derivation Framework can produce one or several output DxAODs for a specified input xAOD. The target size for a derivation is 1–10 TB.
- data reduction by
 - skimming (removing events)
 - slimming (removing per-event information)
- A target upper limit threshold of 1% of the xAOD per derivation is defined as a workable fraction of xAOD input. Assuming 50 derivations in total, this allows for ~4 versions of each derivation.
- target CPU usage: < 40 ms per derivation or \le 160 ms per group with the total budget of 2 s per event

ATLAS Work in Progress

 $\sqrt{s} = 13 \text{ TeV } --\text{resolved}--$

*colours defined by collective consideration of S/B and S/ \sqrt{B}

END

