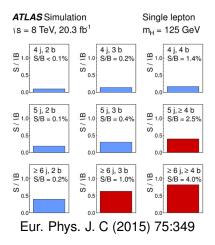
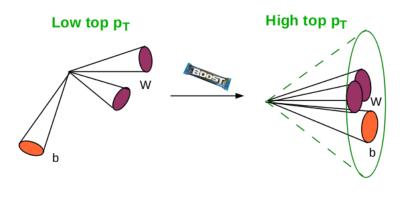
Boosted $t\bar{t}H$, H \rightarrow bb, with ATLAS in LHC Run 2

Sam Crawley

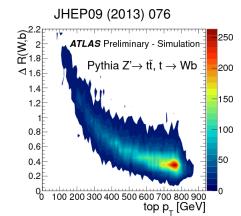


22nd March 2016

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣


Recap resolved semi-leptonic $t\bar{t}H$

- Split events into regions based on jet and b-jet multiplicities.
- Use regions with low signal to constrain the backgrounds and associated uncertainties.
- Train and apply an MVA (more on this later) on signal-rich regions. (Neural network in run 1)


What does "Boosted" mean?

- When a decaying particle has high p_T, its products will take longer to separate and be collimated when hitting the detector.
- Smaller jets will merge into one jet with a larger R parameter.

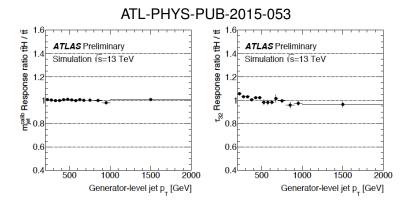
Run 2 Higher Energy

- Run 2 increases √s to 13/14 TeV.
- More energy available, more likely to have a boosted Top and/or Higgs.
- Detector can't resolve individual jets from Top and/or Higgs if sufficiently boosted.

Boosted signal events may not fall into the traditional resolved signal regions.

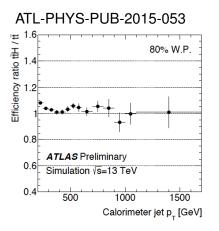
Advantages of the Boosted regime

- *ttH*(*bb*) lepton + jets channel suffers from a high combinatorial background.
 - Especially difficult to separate $t\bar{t}H$ from $t\bar{t}$ background.
- Working at higher energies:
 - Allows for the tagging of boosted hadronic Tops and Higgs using jet substructure variables.
 - Reduces the combinatorial background.
 - Provides access to variables involving large-R jets that can be discriminating against background processes.
- We can use all this to better reconstruct the event and separate signal and background.
- Aim to analyse the boosted events separately to gain an overall improvement in sensitivity - need to develop orthogonal selections


Boosted Signal Region

- Preliminary event selection requires at least 1 large jet with R = 1.0 and p_T > 250 GeV, at least 1 of which is top-tagged.
- Removed small jets that were within ΔR = 1.5 of the large top-tagged jets.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●


- Signal Region defined as requiring ≥ 3 small-R jets of which at least 2 are b-tagged.
- B-tagging at 77% WP and Top-tagging at 80% WP) efficiencies.

Boosted Top Tagger

- Attempt to identify large R jet as the hadronic top using the algorithm described here, designed for boosted hadronic tops in Standard Model tt.
- Algorithm uses the calibrated jet mass, m^{calib}_{jet} and the N-subjetiness ratio, τ₃₂.
- Testing was done in tt
 t H due to its busy final state, to see

Boosted Top Tagger

- The efficiency is higher for *ttH* at low *p*_T and is consistent with *tt* at higher *p*_T.
- More visible in top-tagged jets that are geometrically close the the Higgs.
- Shows the efficiency is not diminshed by contamination of the large-R by other jets in a busy environment.

Signal Region Yields at 3.2 fb^{-1} .

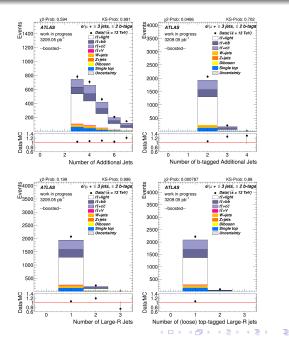
ATLAS	Work in	Progress
-------	---------	----------

 $\sqrt{s} = 13 \text{ TeV}$ --boosted--

Eve	nt Yield	S
	Yield	+/-
tt+light	1120	8.94
$t\overline{t} + b\overline{b}$	349	4.87
$t\overline{t} + c\overline{c}$	393	5.17
W+jets	71.9	4.56
Z+jets	19.2	1.30
Diboson	21.8	1.02
Single Top	139	1.80
$t\overline{t} + V$	20.9	0.18
Sum bkg.	2130	5.28
Data	2310	
ttH exp.	16.0	0.19

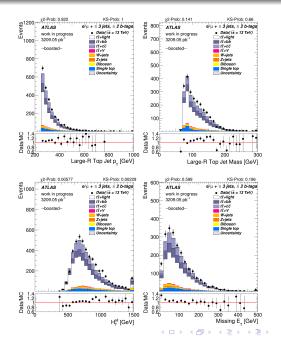
・ロト ・四ト ・ヨト ・ヨト æ

Resolved minus Boosted at 3.2 fb^{-1} .


Need to investigate the overlap as we will veto events from the resolved analysis that fall into the boosted signal region to avoid double counting.

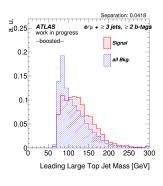
Existing	Resolved									
	4j,2b	5j,2b	≥6j,2b	4j,3b	5j,3b	≥6j,3b	4j,≥4b	5j,≥4b	≥6j,≥4b	
ttH	18.4	27.0	56.6	8.3	15.5	38.9	1.4	4.7	18.3	
all bkg	60319.4	35590	23989.8	6217.3	5029.3	4787.6	128.8	264.7	571.6	
S/B	0.0003	0.0008	0.0024	0.0013	0.0031	0.0081	0.0112	0.0177	0.0320	
S/√B	0.08	0.14	0.37	0.11	0.22	0.56	0.13	0.28	0.77	
Resolved-minus-boosted + booste										
Resolve	d-minus-b	oosted							+	boosted
Resolve	d-minus-b 4j,2b	oosted 5j,2b	≥6j,2b	4j,3b	5j,3b	≥6j,3b	4j,≥4b	5j,≥4b	+ ≥6j,≥4b	boosted "3211"
✓ Resolver ttH			≥6j,2b 52.9	4j,3b 8.2	5j,3b 14.6	≥6j,3b	4 j,≥4b 1.4	5j,≥4b 4.3		
	4j,2b	5j,2b							≥6j,≥4b	"3211"
ttH	4j,2b 18.4	5j,2b 26.2	52.9	8.2	14.6	32.9	1.4	4.3	≥6j,≥4b	"3211" 16.0

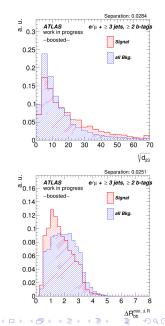
ATLAS WORK IN PROGRESS


Boosted events spread out, low impact on resolved SRs.

Signal Region Kinematics (1)

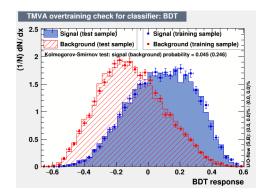
~~


Signal Region Kinematics (2)



Sac

Discriminating Variables


- Some promising variables that help separate ttH from its backgrounds.
- As with the resolved analysis, none are good enough to cut on alone.

TMVA Boosted Decision Tree

- Multiple discriminating variables are used to train a BDT on the signal region.
- Currently going through iterations to improve the separation of the BDT output and then fit to gain an improved combined limit.

Conclusions

- More energy = more boosted hadronically decaying particles.
- Opportunity to take advantage of the boosted events in *ttH*.
- Separate selection and analysis needed for these events.
- Using discriminating variables to train an MVA on the boosted region and then fit. Iterate with different variables and BDT settings/signal regions to optimise.

▲ロ > ▲母 > ▲目 > ▲目 > □ ● の Q @

15/15

• Combine with resolved for overall improvement.