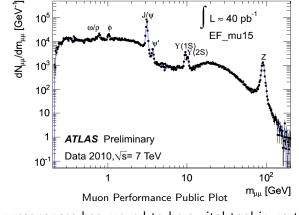

Searching for Dijet Resonances

Run: 280673 Event: 1273922482 2015-09-29 15:32:53 CEST Lydia Beresford IOP Conference March 21, 2016



Focus of this talk is dijet resonance search:

- Dataset: 3.6 fb⁻¹ of 13 TeV proton-proton data
- Collected by the ATLAS detector at the LHC during 2015
- Recently published in Physics Letters B Vol. 754 (2016) Pgs. 302 322
 - Brief introduction to resonances
 - Why dijets?
 - Jets in ATLAS
 - Search strategy
 - Results

 Decay of heavy particles with short lifetimes → resonances (bumps) on top of smooth invariant mass distributions

Searching for resonances has proved to be a vital tool in particle physics & lead to discovery of several Standard Model particles

Lydia Beresford (Oxford)

Searching for Dijet Resonances

Looking for new particle that decays to two back-to-back jets (dijet)

- LHC is a hadron collider, jets are produced in abundance
- Higher LHC energy (13 TeV) \rightarrow increased sensitivity at high mass, even with smaller dataset!
- Sensitive to some of the highest mass scales accessible at the LHC

What could we hope to find?

Dark matter mediator?

8

Something else ...

Quantum black holes?

Lydia Beresford (Oxford)

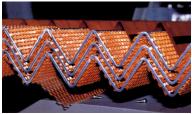
Searching for Dijet Resonances

March 21, 2016 4 / 1

Jets in ATLAS

Analysis uses jets reconstructed with the anti- $k_T R = 0.4$ algorithm

 \rightarrow Clusters together energy deposits, based on distances and transverse momentum, to form jets


ATLAS calorimeter:

Non-compensating: calorimeter responds differently to EM and hadronic parts of the jet

\rightarrow Calibrate jets to obtain correct jet energy!

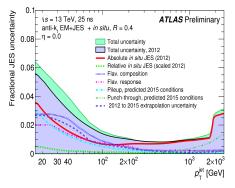
Hadronic calorimeter

EM calorimeter

Lydia Beresford (Oxford)

Searching for Dijet Resonances

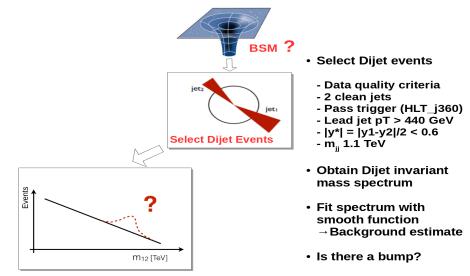
March 21, 2016 5 / 15



Jet calibration:

Will not go through the various stages involved in calibrating jets (more info in backup)

Instead, showing the **uncertainties** associated with 'Jet Energy Scale' calibration


 \rightarrow Indicates how precisely we can calibrate our jets!

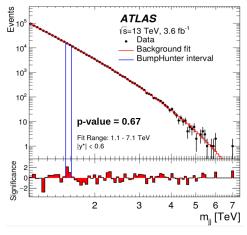
ATL-PHYS-PUB-2015-015

Search strategy

Resonance (bump hunt): Looks for resonance bumps on smooth QCD background

Search results

QCD background smoothly falling \rightarrow Compare data to background estimate (smooth fit) & assess compatibility


3 Parameter fit function: $f(z) = p_1 (1 - z)^{p_2} (z)^{p_3}$ where $z = m/\sqrt{s}$

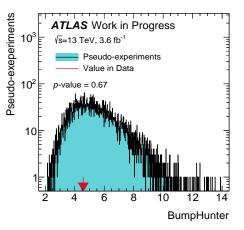
BumpHunter algorithm:

- Scan each possible range of bins (window) from 2 bins to half the mjj spectrum

- Identify window with max value of test statistic (1.53 - 1.61 TeV)

 \rightarrow Shape independence!

Physics Letters B Vol. 754 (2016) Pgs. 302 - 322


QCD background smoothly falling \rightarrow Compare data to background estimate (smooth fit) & assess compatibility

Is the bump significant?

- Generate **pseudoexperiments** (PEs) from background fit
- Compare PEs to their bkg fit and quantify using test statistic

- Calculate fraction of PEs with larger test statistic than data value \rightarrow p-value

p-value = 0.67, not significant!

Model dependent limits

Set limits on benchmark models

 \rightarrow quantify search reach & compare to previous results!

Systematics:

Background

Statistical uncertainty on fit

Fit function choice uncertainy

Signal

Luminosity: 9%

PDF acceptance: 1%

Jet Energy Scale: $\sim 10\%$ (For 6 TeV signal)

q \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$

 g_a

 g_a

Z' dark matter mediator

 \bar{q}

Set limits in benchmark models

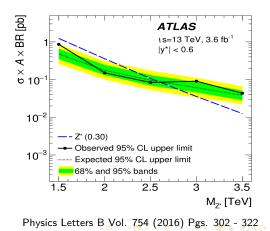
 \rightarrow quantify search reach & compare to previous results!

Systematics:

Background

Statistical uncertainty on fit

Fit function choice uncertainy


Signal

Luminosity: 9%

PDF acceptance: 1%

```
Jet Energy Scale: \sim 10\%
(For 6 TeV signal)
```

Limits on Z' dark matter mediator

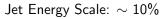
Model dependent limits

Set limits in benchmark models

ightarrow quantify search reach & compare to previous results!

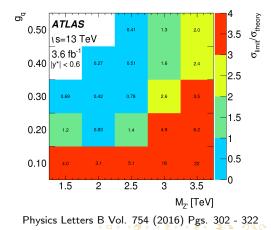
Systematics:

Background

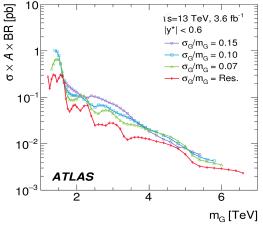

Statistical uncertainty on fit

Fit function choice uncertainy

Signal


Luminosity: 9%

PDF acceptance: 1%


(For 6 TeV signal)

Limits on Z' dark matter mediator

Model independent limits

Physics Letters B Vol. 754 (2016) Pgs. 302 - 322

Model independent limits on **Gaussian** signal \rightarrow Can be reinterpreted by theorists to set limits on their own pet models!

Lydia Beresford (Oxford)

Searching for Dijet Resonances

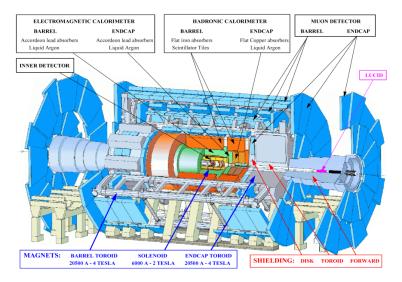
March 21, 2016 13 / 1

Summary

Searches for new physics in dijet channel using 3.6 fb^{-1} 13 TeV proton-proton collision data collected with ATLAS detector:

Physics Letters B Vol. 754 (2016) Pgs. 302 - 322

- Looked for resonant signals, using the dijet invariant mass
 Paper also includes non-resonant search using angular distribution
- No evidence for new physics has been found
- Setting strong limits on models + probing the highest dijet masses!


Model	95% CL Exclusion limit				
	Run 1 Observed	Observed 13 TeV	Expected 13 TeV		
Quantum black holes, ADD (BLACKMAX generator)	5.6 TeV	8.1 TeV	$8.1 { m TeV}$		
Quantum black holes, ADD (QBH generator)	$5.7 { m TeV}$	$8.3 { m TeV}$	$8.3 { m TeV}$		
Quantum black holes, RS (QBH generator)		$5.3 { m TeV}$	5.1 TeV		
Excited quark	4.1 TeV	5.2 TeV	4.9 TeV		
W'	2.5 TeV	2.6 TeV	2.6 TeV		
Contact interactions $(\eta_{LL} = +1)$	8.1 TeV	12.0 TeV	12.0 TeV		
Contact interactions $(\eta_{LL} = -1)$	12.0 TeV	17.5 TeV	18.1 TeV		

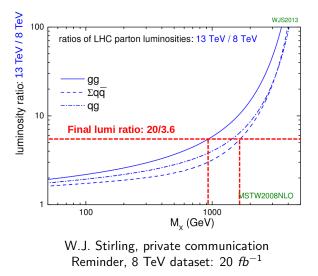
Physics Letters B Vol. 754 (2016) Pgs. 302 - 322

Thank you for listening! Any questions?

BACKUP

ATLAS Detector

http://hedberg.web.cern.ch/hedberg/home/atlas/atlas.html


Lydia Beresford (Oxford)

Searching for Dijet Resonances

March 21, 2016 2 / 14

Motivation

Looking for new particle that decays to two back-to-back jets (dijet)

Lydia Beresford (Oxford)

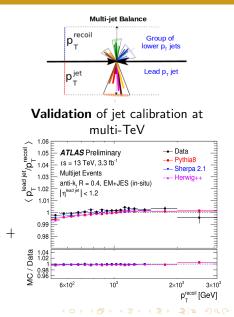
Anti- k_T algorithm used to cluster together EM-scale topoclusters to form jets of radius R = $\sqrt{\Delta\eta^2 + \Delta\phi^2}$ = 0.4

Jet calibration basic ideas

- Use MC, truth and reco level comparisons to derive corrections for missing energy

- Compare data and MC to bring them into agreement & derive uncertainties

Jets in ATLAS


Calibration steps:

- Pile-up: Corrects for energy changes introduced by pile-up
- **Origin**: Changes jet direction to point to primary vertex instead of centre of the detector, jet energy unchanged
- **MC JES**: Corrects the jet energy and pseudorapidity to the particle jet scale, derived using MC
- **GSC**: Sequence of corrections applied at jet level that reduces JES dependence on the flavour of initiating parton (gluon vs quark)
- In-situ: Exploits pT balance of jet recoiling against a well calibrated reference object like Z, γ or multi-jets. Derived using data and MC, applied to data only

Lydia Beresford (Oxford)

In-situ corrections:

- Forward & central jets: η-intercalibration, check pT of forward jets wrt central jets Increasing in p_T as go down
- Z + jet balance
- γ + hadronic recoil balance
- Multi-jet balance, balance lead jet + group of lower pT calibrated jets

• Use Wilk's test

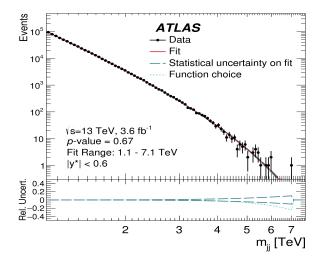
Test statistic: - $2\log(\Lambda) = -2\log\left(\frac{L(H_0|x)}{L(H_1|x)}\right)$ 3 Parameter fit used as H_0

Probability distribution assuming null is true, given by Wilk's theorem: As sample size $\rightarrow \infty$, the test statistic will approach a χ^2 distribution with Ndof = the difference in number of dimensions of the 2 models Use value of test statistic and Wilk's theorem to calculate a p-value

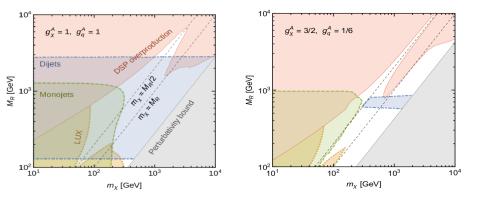
Plot evolution of p-value with lumi

Systematics used in limit setting:

Lumi uncertainty: 9%

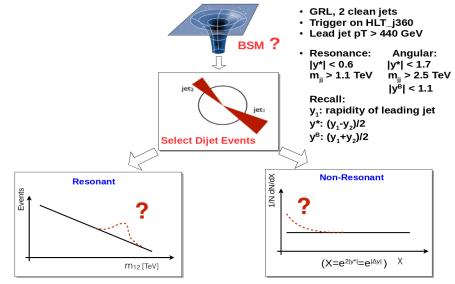

Fit Error: Uncertainty on the background fit, fit pseudo experiments (PEs) and in each mjj bin calculate the RMS of the function value for all PEs

PDF Acceptance: 1% Using a different PDF could change acceptance of a signal (i.e. amount of it we measure)


Fit Function Choice Error: Throw toys from data itself + record the RMS of the difference between the nominal and alternative fit in each bin. The difference between the two original fits to data is then scaled to the RMS of the corresponding bin.

JES Uncertainty: Uncertainty associated with the jet energy scale calibration, using reduced set of 3 components with templates to calculate uncertainty

Fit function uncertainties

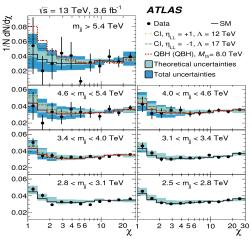


Z' constraints

Constraining Dark Sectors with Monojets and Dijets

The dijet searches - Resonance and Angular!

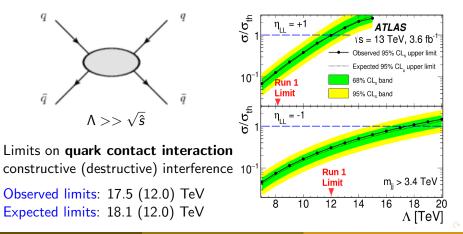
- Resonance (bump hunt): Looks for resonance bumps on smooth QCD background


- Angular: Looks for variations in dijet separation angle from the QCD expectation

Shape analysis (QCD \sim flat) \rightarrow Data-MC comparison of χ in different m_{jj} regions

MC : NLO Corrected (QCD and EW) Pythia, normalised to data

Perform search in bins with $m_{jj} > 3.4 \text{ TeV}$


 CL_s method used to test compatibility of data with MC prediction: **p-value** = **0.35**

Dijet angular - Limits

Set limits on non-resonant CI signals with angular analaysis!

Calculate limits on the ratio of σ/σ_{th} , where σ_{th} is predicted cross-section, as a function of compositeness scale, Λ

Lydia Beresford (Oxford)

atus: July 2015							TeV ∫£ dt =	(4.7 - 20.3) fb ⁻¹	$\sqrt{s} = 7, 8 \text{ Te}$
Model	ℓ,γ	Jets	ET	∫£ dt[ft	^{[-1}]	Limit			Reference
ADD $G_{KK} + g/q$	-	≥1j	Yes	20.3	Mo		5.25 TeV	n = 2	1502.01518
ADD non-resonant ((2e, µ	-	-	20.3	Ms		4.7 TeV	n = 3 HLZ	1407.2410
ADD QBH $\rightarrow \ell q$	1 e, µ	1 j	-	20.3	Max		5.2 TeV	n = 6	1311.2006
ADD QBH	-	2)	-	20.3	Mas		5.82 TeV	n = 6	1407.1376
ADD BH high N _{trk}	2 µ (SS)	-	-	20.3	Mp		4.7 TeV	n = 6, M _D = 3 TeV, non-rot BH	1308.4075
ADD BH high $\sum p_T$ ADD BH high multijet	$\geq 1 e, \mu$	≥2j ≥2j	-	20.3	Mp		5.8 TeV	n = 6, M _D = 3 TeV, non-rot BH	1405.4254
ADD BH nigh multiplet BS1 $G_{KK} \rightarrow \ell\ell$	2 e.µ	221	-	20.3	Mm Gxx mass		5.8 TeV	$n = 6$, $M_D = 3$ TeV, non-rot BH $k/\overline{M}_{PT} = 0.1$	1503.08988
RS1 $G_{KK} \rightarrow cc$ RS1 $G_{KK} \rightarrow \gamma\gamma$	29	-	-	20.3	G _{KK} mass		2.68 TeV	$\frac{k/M_{PT} = 0.1}{k/\overline{M}_{PT} = 0.1}$	1405.4123
Bulk RS $G_{KK} \rightarrow ZZ \rightarrow gall$	2 0. 4	2i/1J	-	20.3	G _{KK} mass	740 GeV	2.00 184	$k/M_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$	1409.6190
Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell v$		21/13	Yes	20.3	W' mass	760 GeV		$k/M_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$	1503.04677
Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	-	4b	105	19.5	G _{KK} mass	500-720 GeV		$k/M_{py} = 1.0$ $k/\overline{M}_{py} = 1.0$	1506.00285
Bulk RS $g_{KK} \rightarrow t\bar{t}$	1 e.µ	≥ 1 b, ≥ 1J/	/2i Yes	20.3	Rex mass	300-120 001	2.2 TeV	BB = 0.925	1505.07018
2UED / RPP		≥1b,≥1		20.3	KK mass	960 GeV			1504.04605
$SSM Z' \rightarrow \ell\ell$	2 e. µ		-	20.3	7' mass		2.9 TeV.		1405.4123
$SSM Z' \rightarrow tt$ $SSM Z' \rightarrow tT$	27	-		19.5	Z' mass		2.02 TeV		1502.07177
$SSM W' \rightarrow fr$	1.e.u	-	Yes	20.3	W mass		3.24 TeV		1407,7494
EGM $W' \rightarrow WZ \rightarrow \ell_Y \ell' \ell'$	3 e. µ	-	Yes	20.3	W' mass	1	32 TeV		1406.4456
EGM $W' \rightarrow WZ \rightarrow gall$	20.4	21/1J	-	20.3	W' mass		59 TeV		1409.6190
EGM $W' \rightarrow WZ \rightarrow qqqq$	-	2 J	-	20.3	W' mass	1.3-	5 TeV		1506.00962
$HVT W' \rightarrow WH \rightarrow \ell \gamma bb$	1 e, µ	2 b	Yes	20.3	W' mass	1/	7 TeV	$g_V = 1$	1503.08089
LRSM $W'_{\mu} \rightarrow t\overline{b}$	1 e, µ	2 b, 0-1 j	Yes	20.3	W' mass		1.92 TeV		1410.4103
LRSM $W_R^7 \rightarrow t\overline{b}$	0 e, µ	≥ 1 b, 1 J	- 1	20.3	W' mass		1.76 TeV		1408.0886
CI gggg	-	2 j	-	17.3	٨		12.0	TeV η _{LL} = -1	1504.00357
CI qqll	2 e, µ	-	-	20.3	A		and the second	21.6 TeV η _{LL} = −1	1407.2410
CI uutt	2 e, μ (SS)	≥ 1 b, ≥ 1	j Yes	20.3	A		4.3 TeV	$ C_{LL} = 1$	1504.04605
EFT D5 operator (Dirac)	0 e, µ	≥1j	Yes	20.3	м.	974 GeV		at 90% CL for m(x) < 100 GeV	1502.01518
EFT D9 operator (Dirac)	0 e, µ	1 J, ≤ 1 j	Yes	20.3	м,		2.4 TeV	at 90% CL for m(\chi) < 100 GeV	1309.4017
Scalar LQ 1 st gen	2 e	≥2j	-	20.3	LQ mass	1.05 TeV		$\beta = 1$	Preliminary
Scalar LQ 2 nd gen	2 µ	≥ 2]	-	20.3	LQ mass	1.0 TeV		$\beta = 1$	Preliminary
Scalar LQ 3 rd gen	1 e, µ	≥1 b, ≥3 j	Yes	20.3	LQ mass	640 GeV		$\beta = 0$	Preliminary
$VLQ TT \rightarrow Ht + X$	1 e, µ	≥ 2 b, ≥ 3	i Yes	20.3	T mass	855 GeV		T in (T,B) doublet	1505.04306
$VLQ YY \rightarrow Wb + X$	1 e.µ	$\geq 1 b, \geq 3$	i Yes	20.3	Y mass	770 GeV		Y in (B,Y) doublet	1505.04306
$VLQ BB \rightarrow Hb + X$		$\geq 2b, \geq 3$	j Yes	20.3	B mass	735 GeV		isospin singlet	1505.04306
$VLQ BB \rightarrow Zb + X$	2/≥3 e, µ	≥2/≥1 b	-	20.3	B mass	755 GeV		B in (B,Y) doublet	1409.5500
$T_{5/3} \rightarrow Wt$	1 e, µ	≥ 1 b, ≥ 5	i Yes	20.3	T _{\$/3} mass	840 GeV			1503.05425
Excited quark $q^* \rightarrow q\gamma$	1γ	11	-	20.3	q" mass		3.5 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1309.3230
Excited quark $q^* \rightarrow qg$	-	21	-	20.3	q' mass		4.09 TeV	only u" and d", $\Lambda = m(q^*)$	1407.1376
Excited quark b [*] → Wt		1 b, 2 j or 1		4.7	b' mass	870 GeV		left-handed coupling	1301.1583
Excited lepton $\ell^* \rightarrow \ell \gamma$	2 e, µ, 1 γ	-	-	13.0	C mass		2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
Excited lepton $v^* \rightarrow \ell W, \nu Z$	3 e, μ, τ	-	-	20.3	v* mass		1.6 TeV	$\Lambda = 1.6 \text{ TeV}$	1411.2921
LSTC $a_T \rightarrow W\gamma$	1 e, μ, 1 γ		Yes	20.3	a _T mass	960 GeV			1407.8150
LRSM Majorana v	2 e.µ	2)	-	20.3	N ^o mass		2.0 TeV	$m(W_R) = 2.4$ TeV, no mixing	1506.06020
	2 e, µ (SS)	- (-	20.3	H** mass	551 GeV		DY production, $BR(H_{L}^{11} \rightarrow \ell \ell)=1$	1412.0237
Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	3 e. µ. τ	1.b	-	20.3		00 GeV		DY production, $BR(H_L^{++} \rightarrow \ell \tau)=1$	1411.2921
Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$			Yes	20.3	spin-1 invisible particle mass	657 GeV		ann	1410.5404
Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod)	1 e,µ	10							
Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$	1 e,µ	-	-	20.3	multi-charged particle mass	785 GeV	TeV	DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1504.04188 Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.

March 21, 2016 14 / 14

---- 990