

The University of Manchester

Charmless B meson decays $B_{(s)} \rightarrow p\overline{p}hh^{(\prime)}$ at LHCb

Giulio Dujany

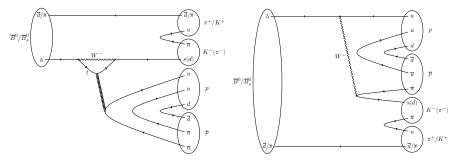
on behalf of the LHCb collaboration 21 March 2016

Introduction

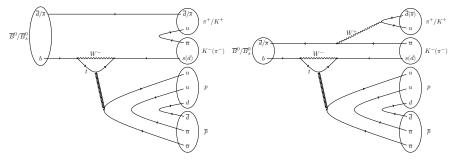
2 Analysis strategy

3 Selection

Introduction


- Very little is known about charmless baryonic *B* decays in general and $B_{(s)} \rightarrow p\overline{p}hh^{(\prime)}$ in particular
- In the PDG only:
 - $\mathcal{B}(B \to p\bar{p}K^{*0}(892)) = (1.24^{+0.28}_{-0.25}) \cdot 10^{-6}$
 - $\mathcal{B}(B \rightarrow \rho \overline{\rho} \pi \pi) < 2.5 \cdot 10^{-4}$ CL = 90%
- Little known also about baryonic B_s decays

• Evidence for
$$\overline{B}_s^{\mathsf{O}} o \Lambda_c^+ \overline{\Lambda} \pi^-$$
 at Belle


- Aim is to measure the inclusive branching fractions of $B_{(s)} \rightarrow p\overline{p}hh^{(\prime)}$ excluding the charm resonances (η_c , J/ψ , $\psi(2S)$, D^0 , Λ_c , ...)
- With the 3 fb⁻¹ Run I LHCb dataset possible to measure branching fractions or to set World's best upper limits
- Analysis still ongoing

Theoretical overview

- Challenging to predict these branching fractions due to soft QCD
- No literature targeted these modes yet
- Possible to draw a few Feynman diagrams and do some naive considerations

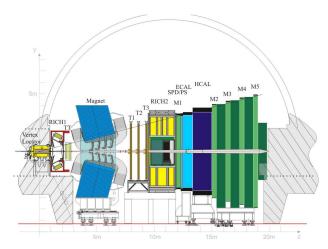
Theoretical overview

Looking at CKM matrix elements can roughly expect the hierarchy:

$$\mathcal{B}(\mathbf{B} \to \mathbf{p}\overline{\mathbf{p}}\mathbf{K}^{+}\pi^{-}) > \mathcal{B}(\mathbf{B} \to \mathbf{p}\overline{\mathbf{p}}\pi^{+}\pi^{-}) > \mathcal{B}(\mathbf{B} \to \mathbf{p}\overline{\mathbf{p}}\mathbf{K}^{+}\mathbf{K}^{-})$$

$$\mathcal{B}(\mathbf{B}_{\mathsf{s}} \to \boldsymbol{\rho} \overline{\boldsymbol{\rho}} \mathbf{K}^{+} \mathbf{K}^{-}) > \mathcal{B}(\mathbf{B}_{\mathsf{s}} \to \boldsymbol{\rho} \overline{\boldsymbol{\rho}} \mathbf{K}^{-} \pi^{+}) > \mathcal{B}(\mathbf{B}_{\mathsf{s}} \to \boldsymbol{\rho} \overline{\boldsymbol{\rho}} \pi^{+} \pi^{-})$$

Giulio Dujany (Manchester)

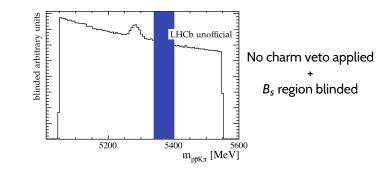

LHCb

Decay time resolution \sim 45 fs

IP resolution $\sim 20 \mu \text{m}$

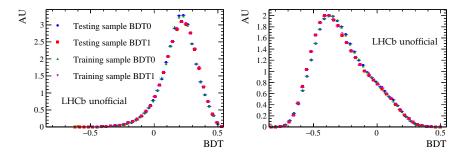
Vertex resolution \sim 13 μ m in x y (25 tracks)

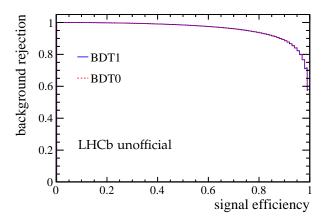
$$\begin{split} &\Delta p/p \sim 0.5 - 1.0\% \\ &\epsilon(\mu) \sim 97\%, \\ &\textit{misID}(\pi \rightarrow \mu) \sim 1 - 3\% \\ &\epsilon(K) \sim 95\%, \\ &\textit{misID}(\pi \rightarrow K) \sim 5\% \end{split}$$



- Reconstruct and select $B^{0}_{(s)} \rightarrow p\overline{p}hh^{(\prime)}$ candidates
- Use as a normalisation mode $B \rightarrow (J/\Psi \rightarrow p\overline{p})(K^* \rightarrow K^+\pi^-)$
- Exclude charmonium and open charm mesons and baryons from the signal only as last step
- Same reconstruction and selection for signal and normalisation mode up to the charm vetoes to reduce systematic uncertainties
- Compute branching fractions as:

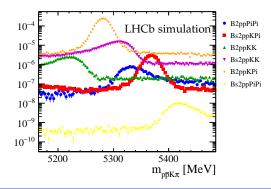
$$\frac{\mathcal{B}(B_{(s)}^{O} \to p\overline{p}hh^{(\prime)})}{\mathcal{B}_{vis}(B \to J/\Psi K^{*})} = \frac{N(B_{(s)}^{O} \to p\overline{p}hh^{(\prime)}) \cdot \varepsilon(B \to J/\Psi K^{*})}{N(B \to J/\Psi K^{*}) \cdot \varepsilon(B_{(s)}^{O} \to p\overline{p}hh^{(\prime)})} \left(\times \frac{f_{d}}{f_{s}}\right)$$


Trigger and stripping


- Select candidates in the trigger exploiting presence of hadrons in the final state and the topology of the multibody decay
- In the first cut based selection (stripping):
 - Fiducial cuts on final state particles
 - Final state particles not coming from a primary vertex but all from the same secondary vertex
 - B^O_(s) candidate in the right mass range

Multivariate selection

- BDT with topological and kinematical variables trained on signal MC (all $B^0_{(s)} \rightarrow p\overline{p}hh^{(1)}$ modes) and data upper sideband
- Signal and background divided in two independent samples
- Train BDT on one, test and apply on the other



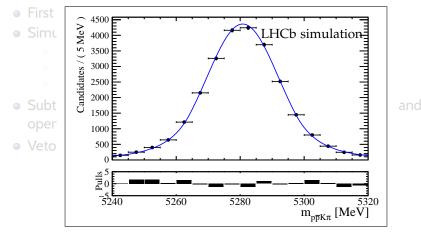
More than 85% background rejection with signal efficiency of 90%

Selection optimisation

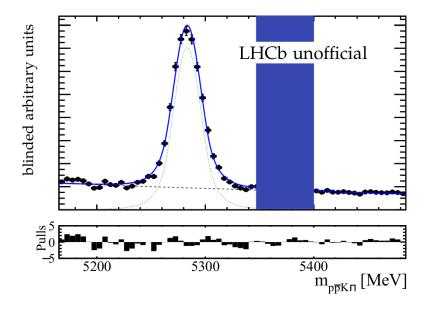
- Maximize at the same time for cut on BDT output and Particle identification variables (to select protons and to distinguish between pions and kaons)
- Two kind of background to consider:
 - continuum combinatorial background
 - misID background (signal but in the wrong mass spectrum, peaks just under the signal peak)

Under the main peak there are both misID background and signal, its initial ratio (*f*) is an input of the procedure and a reasonable value can be guesstimated

 $B_{(s)} \rightarrow p\overline{p}hh^{(\prime)}$

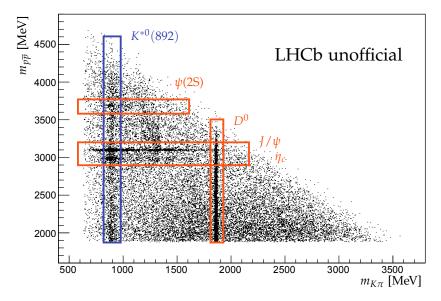

- With very loose cuts, use simple fit (signal Gaussian + linear combinatorial background) to obtain *g*, initial ratio between background events under the peak and events in the peak
- Use MC to evaluate efficiencies of signal and misID background
- Fit sidebands to estimate efficiency background
- Use as significance:

$$Sig = \frac{\varepsilon_{S}}{\sqrt{\varepsilon_{S} + f \cdot \frac{\varepsilon_{MO}}{\varepsilon_{SO}} \cdot \varepsilon_{M} + g \cdot \frac{\varepsilon_{SO} + f \cdot \varepsilon_{MO}}{\varepsilon_{SO}} \cdot \varepsilon_{B}}}$$


• From MC obtain shape of signal and misID background

- First fit before veto on charm components
- Simultaneous fit to the 3 final states, in each one:
 - ▶ *B* and *B*_s signal peaks,
 - misID component, yield constrained from efficiencies
 - Combinatorial background
- Subtract background (sPlots) to see charmonium resonances and open charms mesons and baryons
- Veto charm components and fit again

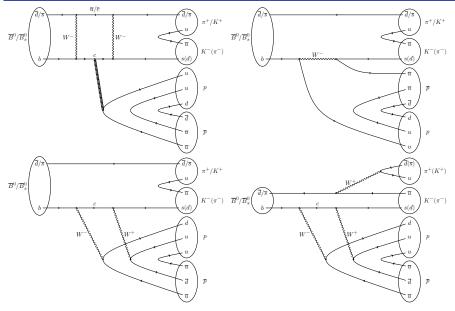
• From MC obtain shape of signal and misID background



- From MC obtain shape of signal and misID background
- First fit before veto on charm components
- Simultaneous fit to the 3 final states, in each one:
 - ▶ *B* and *B*_s signal peaks,
 - misID component, yield constrained from efficiencies
 - Combinatorial background
- Subtract background (sPlots) to see charmonium resonances and open charms mesons and baryons
- Veto charm components and fit again

- From MC obtain shape of signal and misID background
- First fit before veto on charm components
- Simultaneous fit to the 3 final states, in each one:
 - ▶ *B* and *B*_s signal peaks,
 - misID component, yield constrained from efficiencies
 - Combinatorial background
- Subtract background (sPlots) to see charmonium resonances and open charms mesons and baryons
- Veto charm components and fit again

Fit strategy



- From MC obtain shape of signal and misID background
- First fit before veto on charm components
- Simultaneous fit to the 3 final states, in each one:
 - ▶ *B* and *B*_s signal peaks,
 - misID component, yield constrained from efficiencies
 - Combinatorial background
- Subtract background (sPlots) to see charmonium resonances and open charms mesons and baryons
- Veto charm components and fit again

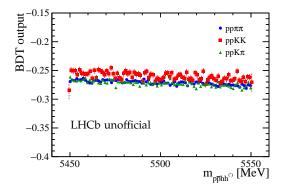
- Measurement of the branching fractions of the charmless baryonic decays $B_{(s)} \rightarrow p\overline{p}hh^{(\prime)}$ in advanced status
- In 6 decay modes either:
 - Make first observation
 - Set World's best upper limit
- Potential for first observation of a baryonic B_s decay

BACKUP

Feynman diagrams

Stripping selection

< 3		
True		
> 1500 MeV		
> 300 MeV		
> 6		
< 0.35		
> 0.05		
< 3		
True		
> 1500 MeV		
> 300 MeV		
> 4		
> 4		
> 4 < 0.35		


Stripping selection

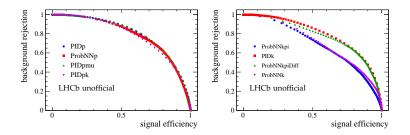
Track fit χ^2 /ndof	< 3			
Has RICH information	True			
р	> 1500 MeV			
p _T	> 300 MeV			
Track impact parameter divided by its	> 2			
error				
Track ghost probability	< 0.35			
ProbNNp	> 0.05			
$p\overline{p}$ SELECTION				
	< 4700 MeV (ppKK)			
m _{pp}	$<$ 5000 MeV (p $\overline{p}K\pi$)			
	$<$ 5350 MeV ($p\overline{p}\pi\pi$)			
Sum p	> 7 GeV			
Sum p _T	> 750 MeV			
Max p	> 4 GeV			
Max p _T	> 400 MeV			
Product ProbNNp	> 0.05			

~

$B^{O}_{(s)}$ selection	
Mass	∈ [5050, 5550] MeV
Vertex fit χ^2	< 30
Sum p_T of daughters	> 3000 MeV
ρ _T	> 1000 MeV
Particle trajectory minimum dis-	< 0.2 mm
tance from a primary vertex	
Distance of closest approach be-	< 20
tween any two daughters divided	
by its error	
Cosine of the angle between the	> 0.9999
particle momentum and its direc-	
tion of flight	

19

No strong correlation between BDT output and mass


No significant benefit in having a different BDT per

- year of data taking
- final state

Particle identification

In LHCb various variables can be used to discriminate between different particles

- Log likelihood difference between two different mass hypotheses for the same particle based on the RICH reconstruction (eg. PIDk)
- Neural network putting together information from RICH and the rest of the detector (tracker, muon chambers ...) (eg. ProbNNp)

Chosen

- PIDk to distinguish between pions and kaons, nice property that the same particle cannot be selected as kaon and pion at the same time
- ProbNNp to select protons

Mode	Signal	misID	f	BDTCut	pCut	KCut	piCut		
р₽КК	$B_s \rightarrow p\overline{p}KK$	$B \rightarrow p \overline{p} K \pi$	f_d/f_s	0.1	0.45	5	-		
ppKπ	$B \rightarrow p \overline{p} K \pi$	$B_s \rightarrow p\overline{p}KK$	f_s/f_d	0.05	0.35	3	-0.5		
ρ ππ	$B ightarrow p \overline{p} \pi \pi$	$B ightarrow p \overline{p} K \pi$	$(\sin^2 \theta_c)/5$	0.15	0.5	-	-0.5		
Initial loose cuts			0	0.1	0.1	-0.1			
$f_d/f_s = 3.86$ from LHCb-CONF-2013-011									

 $sin^2(\theta_{Cabibbo}) \sim 0.05$

- BDT > BDTCut
- for p and \overline{p} ProbNNp > pCut
- for K PIDK > KCut
- o for π PIDK < piCut</pre>

Fit strategy

- First fit before veto on charm components
- Fit MC with double sided crystal ball function to get the shape for:
 - Signal (B and B_s)
 - Main mis-ID component
- Simultaneous fit to the 3 final states, in each one:
 - B and B_s signal peaks,
 - * m_B free but common to all 3 final states, $m_{B_s} m_B$ fixed at PDG value
 - * Only one σ_B and one σ_{B_s} free, ratio between final states fixed from MC
 - ★ Tail parameters fixed to MC values
 - Mis-ID component,
 - ★ Shape fixed from MC
 - Yield fixed from efficiencies
 - Background parameterised with an exponential function
- Subtract background (sPlots) to see charmonium resonances and open charms mesons and baryons
- Veto charm components and fit again

- no Charmonium: $m_{p\overline{p}} < 2850 \text{ MeV}$
- no D^0 : veto ±40 MeV from D^0 mass (1825 < $m_{K\pi}$ < 1905 MeV)
- no Λ_c : veto ± 25 MeV from Λ_c mass (2261 $< m_{\overline{p}K\pi} < 2311$ MeV)