Search for MSSM from tau decaying Higgs bosons

Guillermo Hamity

The University of Sheffield

March 22, 2016

The University Of Sheffield.

Guillermo Hamity (Sheffield)

MSSM $H \rightarrow \tau \tau$

March 22, 2016 1 / 21

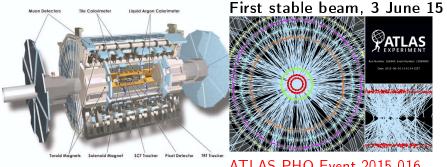
Outline

1 The ATLAS Experiment

2 MSSM and 2HDMs

di-tau Analysis

A.


э

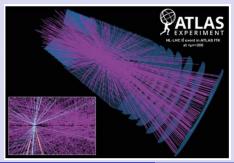
The ATLAS Experiment

A ToroidaL ApparatuS

Show result from Run-II ATLAS

2015 data 13 TeV $3.2 fb^{-1}$ $25 ns^{-1}$ bunches

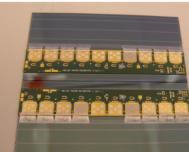
ATLAS-PHO-Event-2015-016


イロト イポト イヨト イヨト 二日

Upgrade

High Lumi LHC (Alex Tapper)

- By 2023 LHC delivers 300 fb⁻¹
- Detector will be changed.
- HL-LHC will deliver ×5 the design luminosity.
- Very High PileUp 140–200 $< \mu > CERN-COURIER 56 1$


Si Tracker to replace TRT

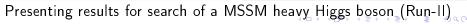
• Prototype strip module CERN-LHCC-2015-020

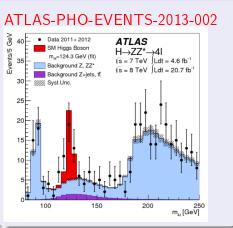
• Sheffild Mechanical module <u>Shef 1</u>

Guillermo Hamity (Sheffield)

MSSM Hightarrow au au

ATLAS and the Higgs Boson


... in agreement with Standard Model


New boson observed in 2012 Four lepton channel

 σ, BR and couplings of H show no deviation from SM within uncertainties

New physics?

- Higgs doublet solely responsible for EW symmetry breaking?
- Is Higgs sector minimal or extended? (BSM)

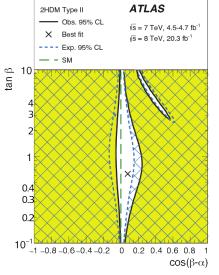
2HDMs

Motivated extension: two Higgs fields break EW symmetry (H_u, H_b)

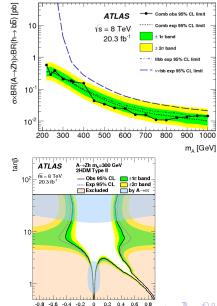
$$ho = m_W/(m_Z \cos \theta_W)
ightarrow 1$$

- 2HDM cases
 - Degenerate $|m_H m_A| < m_Z$
 - Hierarchical $|m_H m_A| > m_Z$ $A^0 \rightarrow ZH^0$
- Simplified CP-conserving case
 - ► Described by [M_φ, tan β, cos(β − α)]

5	Higgs	Bosons	
	h H ⁰ H [±] A	Light Heavy Charged pseudoscalar	

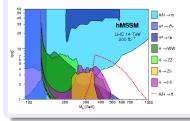

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(eta$ - $lpha)$	$\sin(\beta$ - $\alpha)$	$\sin(\beta$ - $\alpha)$
κ_u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
κ_l	$\cos(\alpha)/\sin(\beta)$	$-\sin(lpha)/\cos(eta)$	$-\sin(lpha)/\cos(eta)$	$\cos(lpha)/\sin(eta)$

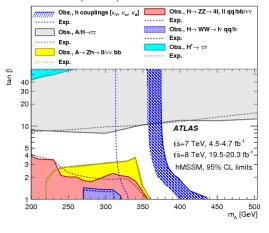
The coupling scale factor of the Higgs boson h to vector bosons, up and d quark, and lepton of each type expressed as ratios relative to the SM-Higgs couplings.


Guillermo Hamity (Sheffield)

2HDM in Run-l

• Direct Searches $(A \rightarrow Zh)$

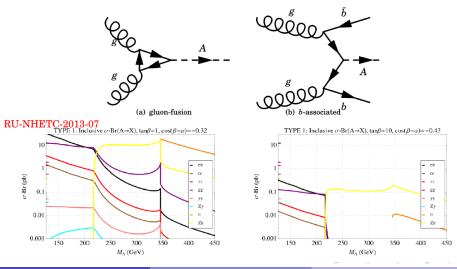

Minimal Supersymmetric SM JHEP 1511 (2015) 206


MSSM

- SUSY in 2HDM (Type-II)
- Described by

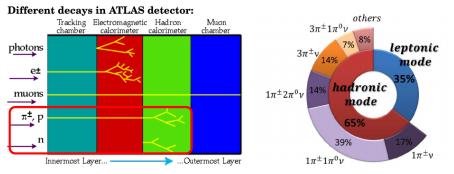
 $(M_{\phi}, an eta)$

JHEP 1506 (2015)

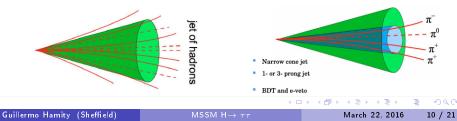


- Dark Matter, hierarchy, naturalness
- Many different benchmarks
- focus on hMSSM $(m_h = 125 \text{GeV})$

Guillermo Hamity (Sheffield)


Motivation (XSs and BRs)

- Gluon fusion is dominant form of production
- b-associated production particularly important for large $tan\beta$.



Guillermo Hamity (Sheffield)

Tau Leptons in ATLAS

Taus never make the inner-detector (can only look at decays) ATLAS-CONF-2013-064 Non-Tau Jet Tau Jet

Object Selection

- Focus on lep-had and had-had resonant decays.
- Two similar but different (backgrounds) analysis are combined.
- Common object selection

Use all of ATLAS

Electrons	15 GeV	$\mid\eta\mid<$ 2.47 †	loose + isolation
Muons	15 GeV	$ \eta < 2.5$	loose + isolation
Jets	anti- k_t algo	$\Delta R < 0.4$	Used for MET
Tau (visible decay)	20 GeV	$\mid\eta\mid<2.5^{\dagger}$	BDT selection

- MET: negative vector sum of p_T + soft term (Benjamin Brunt).
- Remove overlaping objects

taus over jets	$\Delta R < 0.2$
e/μ over jets	$\Delta R < 0.4$
e/μ over taus	$\Delta R < 0.2$
μ over e	$\Delta R < 0.2$

[†]Transition region excluded:1.37 $<\mid\eta\mid<$ 1.52

Event Selection for Lep-Had

Triggers

Medium ele	$p_T > 24$ GeV
Loose ele	$p_T > 120 { m GeV}$
Isolated μ	$p_T > 20 \text{ GeV}$
Non Iso μ	$p_T > 50 \text{ GeV}$

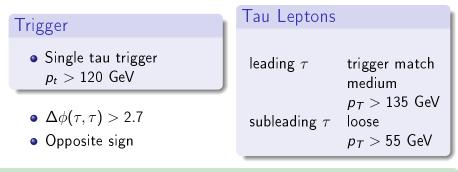
Lepton

n = 1	Medium ID
$p_T > 30 \text{ GeV}$	trigger match

Tau lepton

Medium ID $p_T > 30$ GeV

Choose leading tau

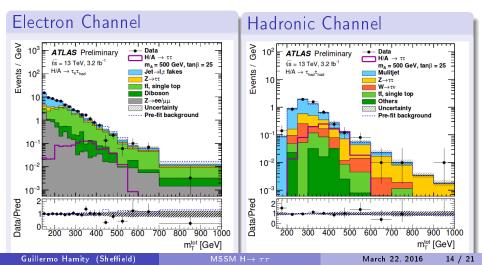

- Opposite charge
- $\Delta \phi(\tau, \ell) > 2.4$
- $m_T(\ell, MET) <$ 40 or $m_T(\ell, MET) > 150^{\dagger}$ GeV
- Reject $80 < m_{vis}(e, au) < 110$ GeV

3

12 / 21

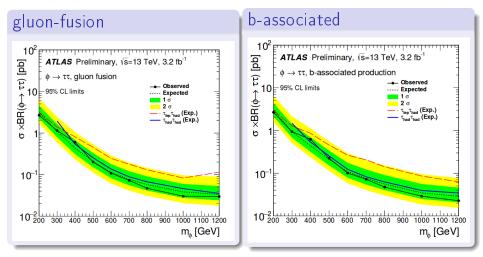
イロト イポト イヨト イヨト

Event Selection for Had-Had



Di-tau mass reconstruction (Lep-Had and Had-Had)

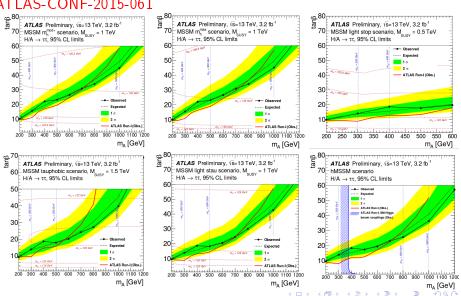
 $m_{\mathrm{T}}^{\mathrm{TOT}} = \sqrt{m_{\mathrm{T}}^{2}(\mathrm{MET}, \tau_{1}) + m_{\mathrm{T}}^{2}(\mathrm{MET}, \tau_{2}) + m_{\mathrm{T}}^{2}(\mathrm{MET}, \tau_{2})}$


Background estimation and final distributions

- Fake-Factor used for jets faking taus: QCD & W+jets(Lep-Had)
- Fake-Rates applied to simulated backgrounds. ATLAS-CONF-2015-061

Limits

ATLAS-CONF-2015-061

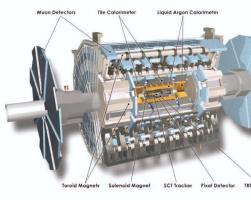

э

(日) (同) (三) (三)

MSSM H $\rightarrow \tau \tau$

Exclusion Limits

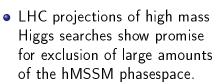
ATLAS-CONF-2015-061

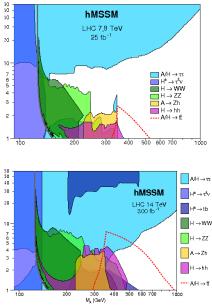

Conclusion

- Benchmark scenarios are used in ATLAS to probe 2HDM and MSSM models.
- These scenarios can be probed via H coupling, or direct resonant searches.
- Direct searches used to exclude large regions of phasespace.
- Can be used in combination with other analysis to exclude large ranges.
- Heavy resonance $\phi\to\tau\tau$ search was conducted and interpreted in several MSSM scenarios.

The ATLAS Experiment

A ToroidaL ApparatuS


- Diameter 25 m; Length : 46 m
- Barrel toroid length 26 m
- Overall weight 7 000 tonnes
- 100 million electronic channels
- ~ 3.000 km of cables
- Sub-Detectors
 - Inner Detector,
 Calorimeters, Muons,
 Forward detectors
- Computing Grid and DATA quality



イロト イポト イヨト イヨト

BSM Combinations

JHEP 1506 (2015)

- Fake Factor Method
 - Background dominated by jet misidentied as $au_{
 m vis}$
 - Fake Factor Method

$$FF = N(pass - tau - ID)/N(fail - tau - ID)$$

Fake Rates

- Fake Rate in MC processes not modelled well.
 - Calculated in CR.
 - Applied to non truth matched taus.

Systematics

- Theoretical XS uncert. for MC (PDF, scale variation)
- Detector Uncrtainties
 - ► Taus, Electron, Muon: trigger, Reco, ID, energy scale
 - JES, JER
 - MET + soft-term
- FakeFactor LH
 - Contamination in W+jets CR
 - Difference in q/g jet fakes in CR/SR
 - Taken from MC
- FakeFactor HH
 - Statistical Uncert of difference between SS/OS FF
- Top MC p_T uncert.
- W+jet norm. uncert. from Sherpa/Powheg.
- Signal: PDF, final state radiation, renormalization, etc.