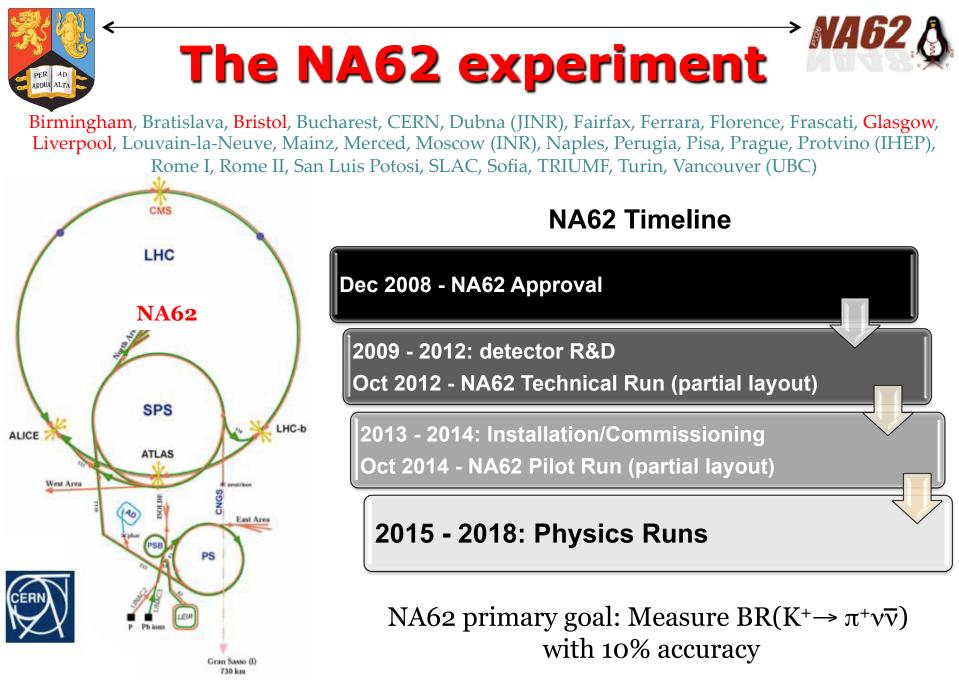


Joint Annual HEPP and APP Conference

Status of the NA62 experiment at CERN



Angela Romano, on behalf of the NA62 collaboration

21-23 March 2016, University of Sussex, Brighton

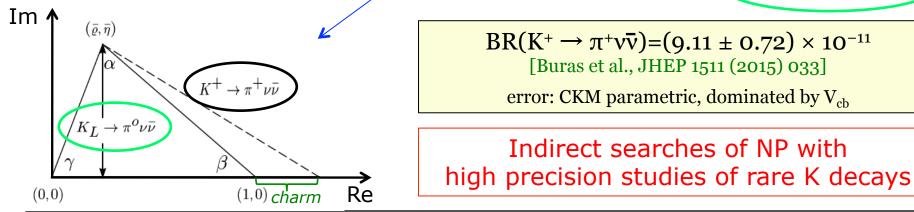
Angela Romano, University of Birmingham (axr@hep.ph.bham.ac.uk)

Motivations for K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$

Box & Penguin (one-loop) diagrams $\mathbf{u}, \mathbf{c}, \mathbf{t}$ $\mathbf{u}, \mathbf{u}, \mathbf{c}, \mathbf{t}$ $\mathbf{u}, \mathbf{u}, \mathbf{u},$

✓ High sensitivity to New Physics

 $\checkmark {\rm FCNC}$ process forbidden at tree level

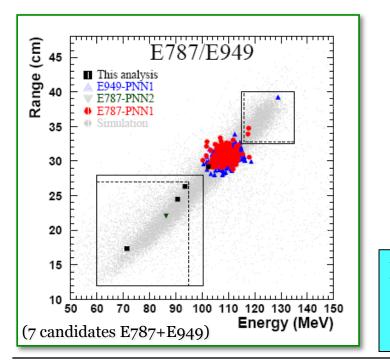

 \checkmark Highly CKM suppressed (BR ~ $|V_{ts}*V_{td}|^2)$

✓ Extraction of V_{td} with minimal (few %) non-parametric uncertainty

Theoretically very clean:

- (dominant) short-distance t quark part: NLO QCD and 2-loop EW corrections
- (small) c quark part: NNLO QCD and NLO EW corrections
- correction for long-distance contributions
- hadronic matrix element extracted from precisely measured $BR(K^+ \rightarrow \pi^0 e^+ \nu)$

Independent determination of unitary triangle for K meson system (with neutral mode)



 $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{THEORY} = (0.91 \pm 0.07) \times 10^{-10}$

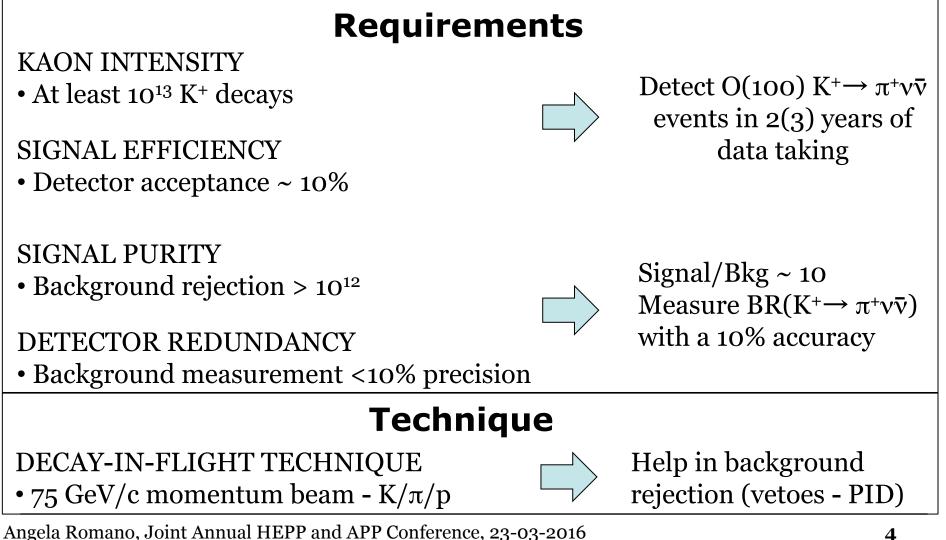
BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu})_{EXP} = 1.73^{+1.15}_{-1.05} \times 10^{-10}$ [E787/E949, Phys.Rev.Lett.101, 191802, 2008]

- based on 7 candidates
- stopped Kaon technique

Discrimination among NP scenarios [Buras et al., JHEP 1302 (2013) 116] LHS2 & Z' CMFV 20 $B(K_L \to \pi^0 \ \overline{\nu} \ \nu) \ [10^{-11}]$ [10⁻¹¹ 15 15 $\rightarrow \pi^0 \bar{\nu} \nu$ 10 10 $B(K_L)$ 25 30 10 15 20 10 20 30 40 $B(K^+ \to \pi^+ \bar{\nu} \nu) [10^{-11}]$ $B(K^+ \to \pi^+ \bar{\nu} \nu)$ [10⁻¹¹] LHS2, Cyan: 5TeV, Blue: 10TeV, Purple: 30TeV →π⁰ √√) [10⁻¹¹] 25 Sensitivity to 20 $M_{Z'}$ beyond the 15 10 LHC B(KL 5 5 10 15 20 0 $B(K^+ \to \pi^+ \nu^- \nu)$ [10⁻¹¹] $K \rightarrow \pi v \bar{v}$ probes of unique sensitivity for NP models among B and K decays

(NP searches complementary/alternative to LHC)

Angela Romano, Joint Annual HEPP and APP Conference, 23-03-2016


MA62

SM BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}) \sim 9 \times 10^{-11}$

The NA62 Beam line

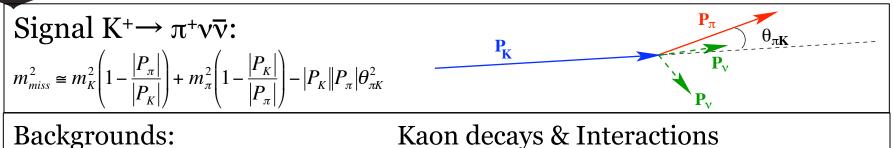
Primary SPS protons on beryllium target

- \checkmark P = 400 GeV/c
- $\checkmark \sim 3 \ge 10^{12}$ protons/pulse (3.5 s effective spill)

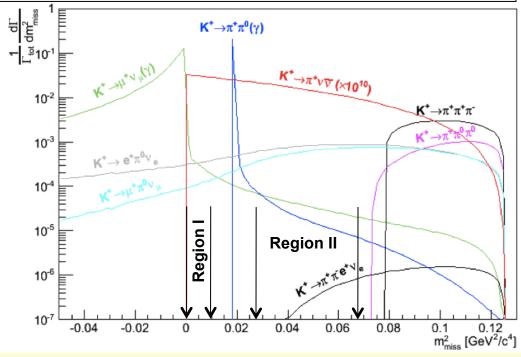
Secondary (unseparated) hadron beam $\pi / K / p$ $\checkmark p = 75(\pm 1\%) \text{ GeV/c}$

- \checkmark X,Y divergence < 100 μrad
- \checkmark Total rate $\sim\!750 \mathrm{MHz}$ (K component $\sim 6\%$)
- \checkmark 10% of K decays in 60 m fiducial volume
- ✓ 4.5 x 10^{12} K⁺ decays/year

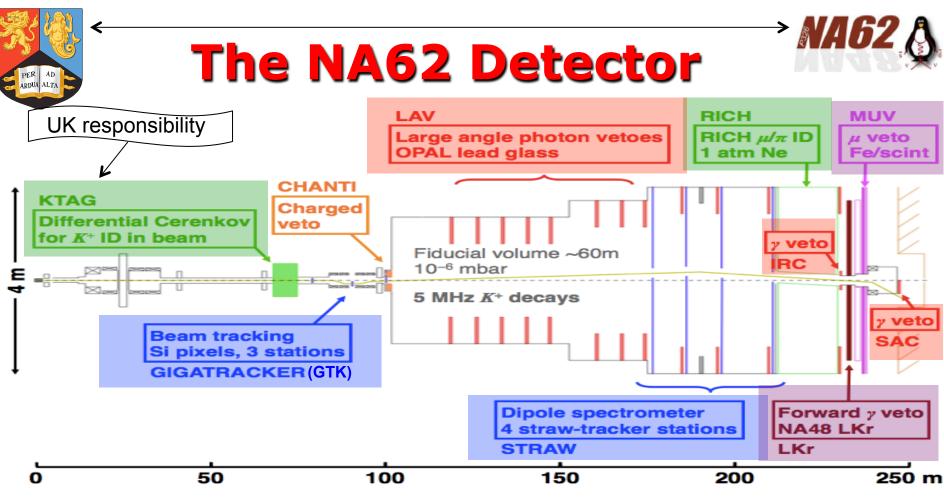
Angela Romano, Joint Annual HEPP and APP Conference, 23-03-2016


Secondary beam line fully commissioned

NA62 \Lambda



Signal and Backgrounds NA62

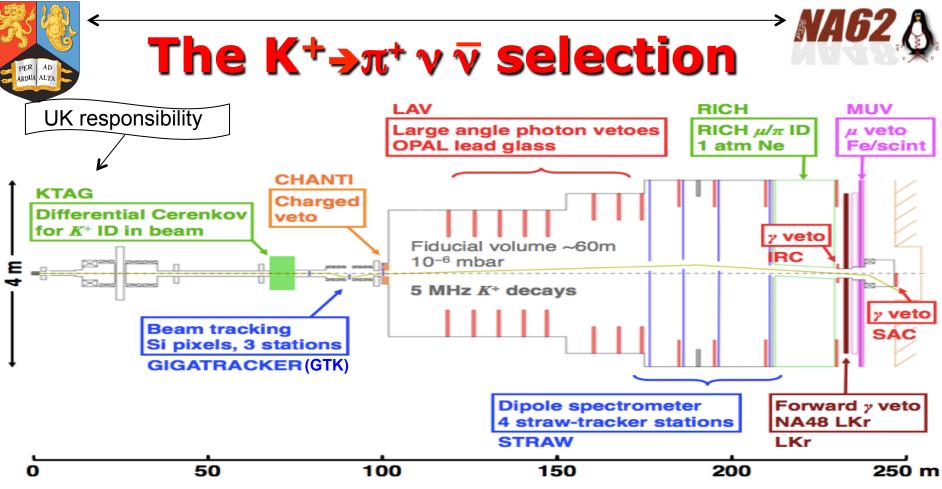


Decay backgrounds		
Mode	BR	
μ ⁺ ν(γ)	63.5%	
$\pi^+\pi^0(\gamma)$	20.7%	
$\pi^+\pi^+\pi^-$	5.6%	
$\pi^0 e^+ u$	5.1%	
$\pi^0\mu^+ u$	3.3%	
$\pi^+\pi^-e^+ u$	4.1 × 10⁻⁵	
$\pi^0\pi^0e^+v$	2.2 × 10⁻⁵	
$\pi^+\pi^-\mu^+ u$	1.4 × 10⁻⁵	
$e^+ v(\gamma)$	1.5 × 10⁻⁵	

Other backgrounds

Beam-gas interactions Upstream interactions Rejection relies on kinematic reconstruction (m_{miss}^2) used in conjunction with PID and veto systems.

Track reconstruction: P_K (**GIGATRACKER**, also called **GTK**), P_{π} (**STRAW**)


PID K for bkg coming from non-kaon components (**KTAG**)

PID π/μ for main (BR~64%) bkg K⁺-> μ ⁺ ν (**RICH**)

 $\pi/\mu/e$ separation for bkg with leptons in final state (LKr, MUV) **Photon rejection** for $K^+ \rightarrow \pi^+ \pi^0$ (BR $\sim 21\%$) and all bkgs

Photon rejection for $K^+ \rightarrow \pi^+\pi^0$ (BR~21%) and all bkgs with γ s in final state (LAV, IRC, SAC)

Hermetic Veto Systems

Event reconstruction:

✓ single π^+ in final state (STRAW, RICH, LKr, MUV)

✓ K⁺ - π^+ sub-ns time association (RICH, KTAG),

 \checkmark m²_{miss} reconstruction for signal definition,

 \checkmark 15 GeV/c < P_{π^+} < 35 GeV/c (>40GeV missing energy)

NA62 Physics Sensitivity NA62

Decay	events / year	
$K^+ ightarrow \pi^+ u ar{ u}$ [SM]	45	
$K^+ ightarrow \pi^+ \pi^0$	5	
$K^+ ightarrow \mu^+ u$	1	
$K^+ ightarrow \pi^+ \pi^- \pi^+$	< 1	
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3-track decays	< 1	
$K^+ ightarrow \pi^+ \pi^0 \gamma$ (IB)	1.5	
$K^+ ightarrow \mu^+ u \gamma$ (IB)	0.5	
$K^+ ightarrow \mu^+ (e^+) \pi^0 u$, others	negligible	
Total background	< 10	
At nominal beam intensity: 4.5 x 10 ¹² K ⁺ decays/year		

At nominal beam intensity: 4.5 x 10¹² K⁺ decays/year Cut & count analysis without any optimization

Detector Commissioning and Data Taking

Secondary beam line:

commissioned up to fully intensity

Detectors:

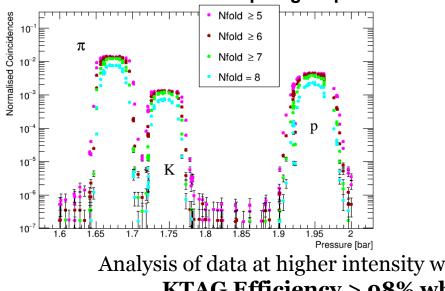
- Trackers: GTK partially commissioned, STRAW commissioned
- > PID: Cherenkov detectors KTAG, RICH commissioned
- Veto: all Calorimeters and other detectors commissioned

Trigger:

- Lo commissioned
- L1-L2 partially commissioned

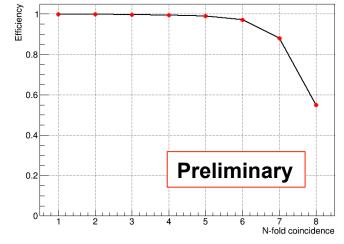
Collection (mainly in 2015) of **samples for data quality study**:

- minimum bias run at low beam intensity (this talk)
- half and full beam intensity data with calorimetric trigger



KTAG: Kaon ID Detector

Commissioning


- > Optical axis aligned with the beam axis
- Pressure scan performed for different diaphragm aperture (nominal at 1.5mm)
- Tune KTAG to Kaon peak to maximise Kaon ID efficiency
- > Pion mis-ID probability: $\sim 10^{-4}$

Pressure scan at 1.5mm diaphragm aperture

Analysis with 2015 data

- Kaons tagged by selecting π⁺π^o with downstream detectors (LKr)
- Selected sample used for Kaon ID
 efficiency studies at low beam intensity
- > Confirmed performances: $\sigma_t(K) < 70 \ ps$

KTAG Efficiency vs N-fold (Sector) coincidence

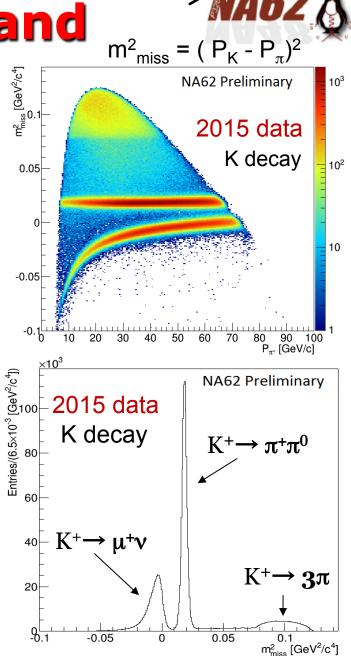
Analysis of data at higher intensity with more control samples on going **KTAG Efficiency > 98% when requiring N-fold ≥ 5**

Signal Topology and Kinematics

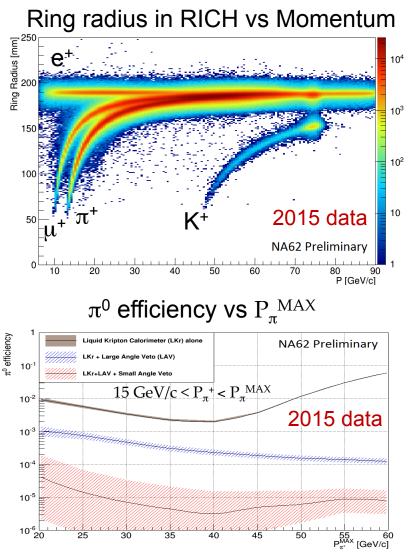
- Single downstream track topology
- > Beam track matching the downstream track
- Beam track matching a K signal in Kaon ID
- > Downstream track matching energy in calorimeters
- > Track origin in the fiducial region

Measured time resolutions (close to design):

- Kaon ID < 100 ps</p>
- Beam track < 200 ps</p>
- > Downstream track < 200 ps</p>
- > Calorimeters 1-2 ns


Kinematics:

Aim at O($10^4 \div 10^5$) rejection factor of main decay modes


Best $K^+ \rightarrow \mu^+ \nu$ suppression for $P_{\pi^+} < 35 \text{ GeV/c}$

Resolution on m_{miss}^2 close to design

Prospects to reach design with fully commissioned GTK

Downstream PID

Aim at O(10⁷) π/μ separation for K⁺->μ⁺ν bkg
 O(10²) π/μ separation with 80% π⁺ efficiency achieved for 15 GeV/c < P_π⁺ < 35 GeV/c (RICH)

Separation with RICH close to expectations Separation with MUV, ongoing analysis

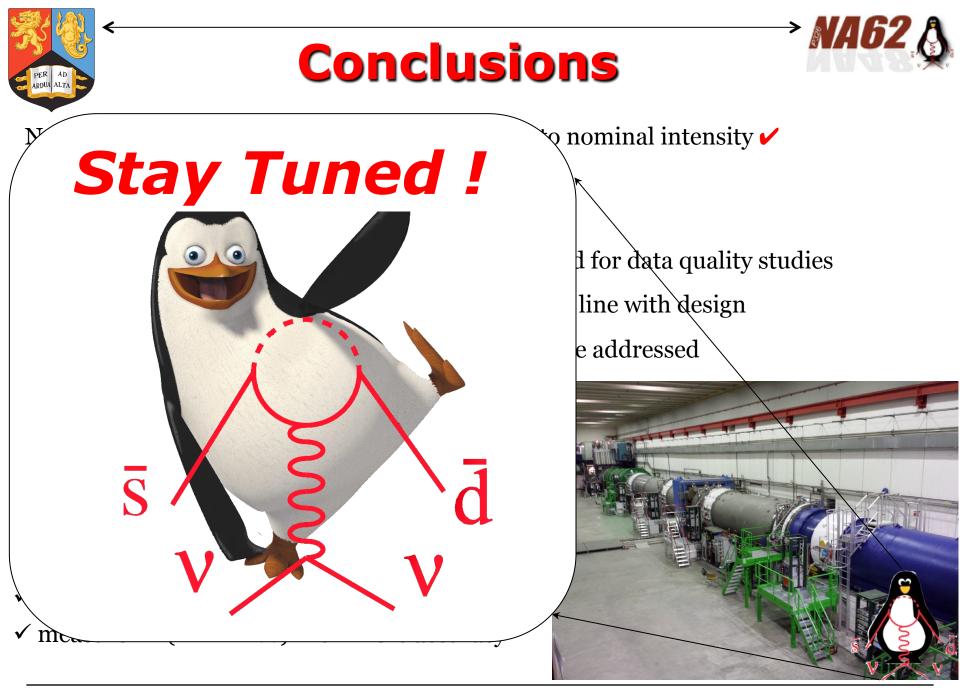
Photon Rejection

- > Aim at O(10⁸) π^{o} rejection for K⁺-> $\pi^{+}\pi^{0}$ bkg
 - $E(\pi^0) > 40 \text{GeV} \text{ for } P_{\pi^+} < 35 \text{ GeV/c}$

 $O(10^5) \pi^0$ rejection obtained Need more stats to reach design sensitivity

Conclusions

NA62 Beam line and Detector commissioned up to nominal intensity First Physics run in 2015:


- > Minimum bias data collected at low intensity used for data quality studies
- → Physics sensitivity for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ measurement in line with design
- ➢ Further compelling physics program is going to be addressed
 - Rare decays, searches for LFV, HNL,...
- > Analysis of data at higher intensity ongoing

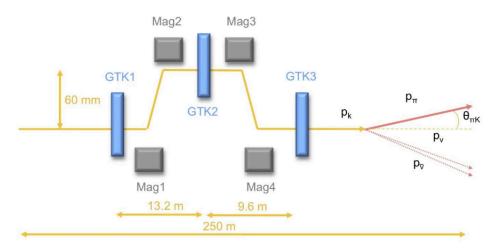
High intensity beam in 2016-2018 for physics runs (next run ~200days starting in April)

Goals:

- ✓ collect O(100) SM K⁺→ $\pi^+ \nu \bar{\nu}$ events
- \checkmark measure BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) with ~10% accuracy

Joint Annual HEPP and APP Conference

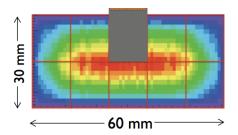
21-23 March 2016, University of Sussex, Brighton



Angela Romano, University of Birmingham (axr@hep.ph.bham.ac.uk)

Beam Reconstruction

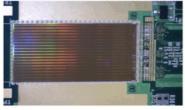
GIGATRACKER (GTK)


Spectrometer layout

- 3 stations of hybrid silicon pixel detectors
- 4 achromat magnets (beam displacement ~60mm)
- 18, 000 pixels/station of size 300 \times 300 μm^2

P_K momentum and position: **GTK** K⁺ timing: **GTK** and **KTAG**

Tracking of K+:


➢ high and non-uniform beam rate @ GTK (750 MHz)

≻minimal amount of material X/X0 < 0.5%/station</p>

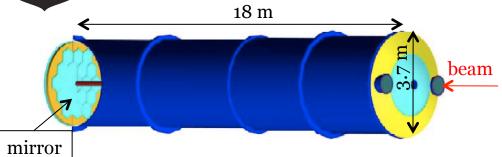
 $> \sigma_t \sim 200 \text{ ps}$ match the π tracking info from downstream detectors

bump-bonded chips on sensor

 $rac{\sigma_p}{p} \sim 0.2\%$ and $\sigma_{\theta} = 16 \mu rad$

Pion Reconstruction

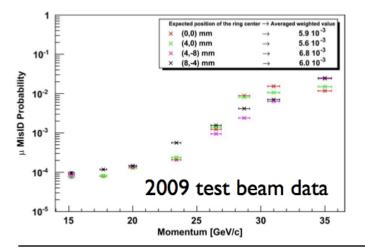
Spectrometer layout


Tracking of secondary charged particles: > operation in vacuum; > ultra-light material X/X0 ~ 0.1%/"View" > spatial resolution $\sigma \le 130 \mu m$ (1 "View") > $\sigma_p/p \sim 0.32\% \oplus 0.008\% p$ [GeV/c] > $\sigma_{\theta(K\pi)} = 20-50 \mu rad$

 \mathbf{P}_{π} momentum and position: **STRAW** π^+ timing: **RICH**

▶ high aperture dipole magnet (B-field ~ 0.36 T; $\Delta p_{\perp} = 270$ MeV)
 ▶ 4 straw-tube chambers (2.1 m in diameter)

Pion ID: RICH


RICH layout and principles

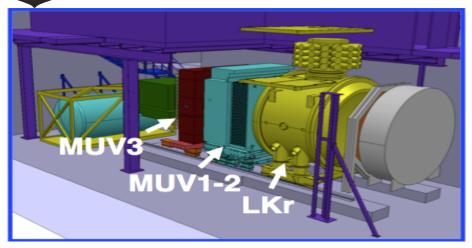
 \triangleright Cherenkov light ring radius prop to β of particle

 \succ Ne gas at 1 atm;

>14 GeV/c threshold for π

> High granularity γ detector (2000 PMTs)

Suppression of $K^+ \rightarrow \mu^+ \nu$ (BR ~ 63%) - L0 trigger for charged particles - μ suppression better than 1%

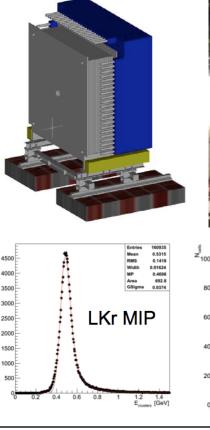

MADZ

- \succ Full length prototype tested in 2009 (test beam)
- Final detector installed on beam line in 2014
- $\gg \pi^+/\mu^+$ separation > 10² up to 35 GeV/c
- \triangleright Resolution on π crossing time $\sigma_t < 100 \text{ ps}$

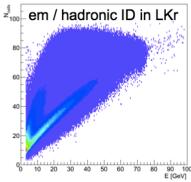
PID: LKr, MUV

π/μ/e separation NA48 LKr em calorimeter:

- em/hadr/mip cluster ID


MUV1-2:

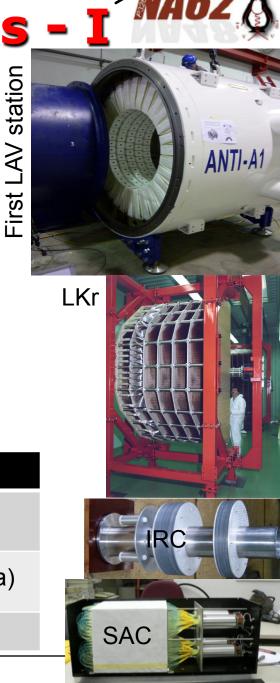
- Fe-scintillators calorimeter
- hadr/mip cluster ID
- suppress μ "catastrophic" energy loss **MUV3**:
- scintillation tiles counter
- detect non-showering muons (<% ineff)
- used in <mark>L0 trigger</mark> (10MHz)


Angela Romano, Joint Annual HEPP and APP Conference, 23-03-2016

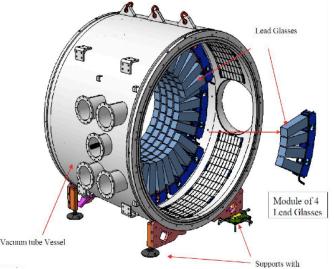
Suppression of $K^+ \rightarrow \mu^+ \nu$ (BR ~ 63%)

- μ mis-ID as a π -> down to ~10⁻⁵
- muon crossing time with $\sigma_t < 1ns$

Photon Veto Systems


Photon Veto system: LAV, LKr, IRC, SAC

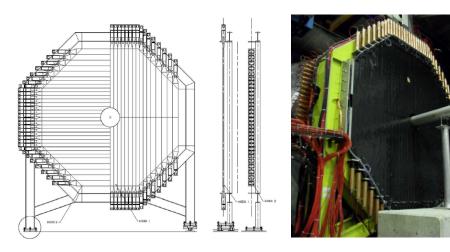
- Suppression of $K^+ \rightarrow \pi^+ \pi^0$ (BR ~ 21%)
- Hermetic photon coverage up to 50 mrad
- O(10⁸) on rejection of π^{o} -> $\gamma\gamma$
- Kinematic cut on $p_{\pi} < 35$ GeV gives $\pi^{o} >\gamma\gamma$ with > 40 GeV


Simulations showed:

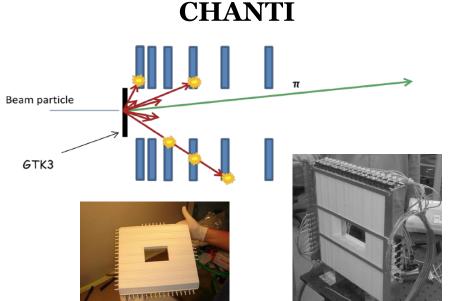
- $K^+ \rightarrow \pi^+ \pi^0$ kinematic rejection $(m_{miss}^2) \sim 10^{-4}$
- 81.2% $2\gamma s$ in forward region (LKr/SAC)
- $18.6\% 1\gamma$ in LKr/SAC, 1γ at large angle (LAV)
- 0.2% 1 γ in LAV, 1 γ out of acceptance (>50mrad)

Detector	Technology	θ [mrad]	Max. (1-e)
LAV	Lead-glass block from OPAL	8.5 - 50	10 ⁻⁴ at 200MeV
LKr	NA48 EM calorimeter	1 - 8.5	10 ⁻³ at 1 GeV (data) 10 ⁻⁵ at 10 GeV
IRC+SAC	Shashlik	< 1	10 ⁻⁴ at 5 GeV

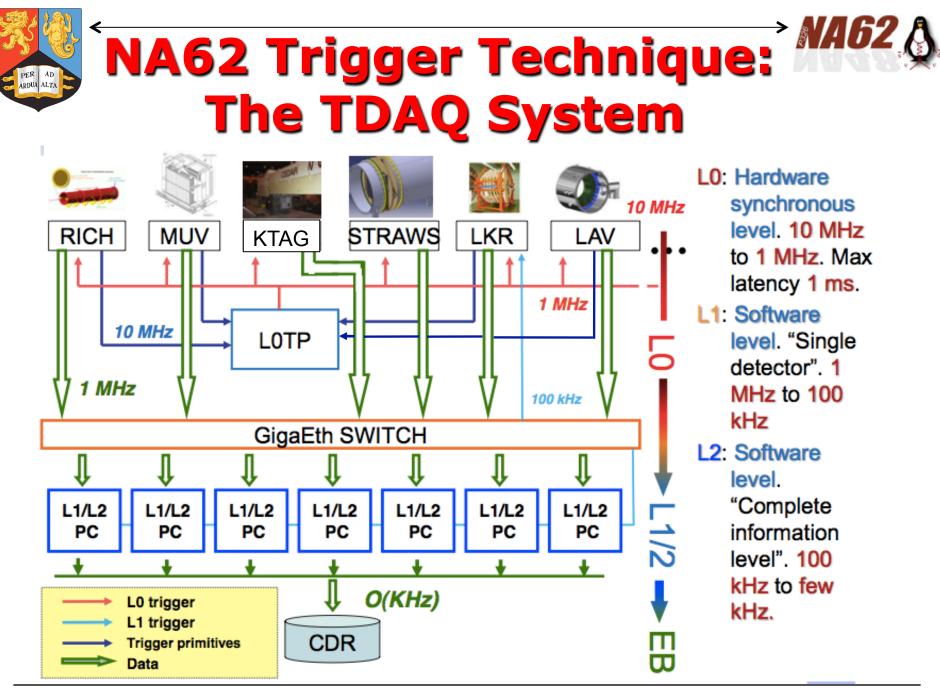
C Photon Veto Systems - II


- -12 LAV stations distributed along the decay volume and covering the angular region: (8.5÷50) mrad;
- Photon energy range (10MeV÷30GeV);
- each **LAV**: 4/5 staggered layers of lead-glass crystals from OPAL EM barrel calorimeter;
- test beam with e^- at 200MeV showed (1- ϵ) ~10⁻⁴

- **LKr** fundamental detector constructed for the studies of direct CP-violation in the neutral kaon system (NA48);
- quasi-homogeneous ionization chamber;
- Photon energy range (>1GeV);
- high energy (>10GeV) EM showers contained in compact detector (27 X0);
- 13, 248 readout cells with a transverse size of $\sim 2 \times 2$ cm² each and no longitudinal segmentation;
- from studies with e⁻ at E>10GeV -> $(1-\epsilon) \sim 8x10^{-6}$



CHOD (NA48 Charged Hodoscope)


> 2 planes of plastic scintillation counters (horizontal & vertical)
> ~ 0.05 X0 each plane
> time resolution σ_t ~ 200 ps;

Fast charged particles signal for trigger

- ➢ 6 scintillator stations in vacuum
- ≻ WLS + SiPM readout
- ≻ angle coverage (1.3-4.9) mrad

Veto for charged particles from inelastic interactions in GTK3

